

Project Background

Pavement Management History

- In 1998, first pavement management plan was developed in Ladysmith
- The 1998 study included a total of 42.8 km of roads; 12.6 km of collector roads and 30.2 km local roads.

The objectives of this study:

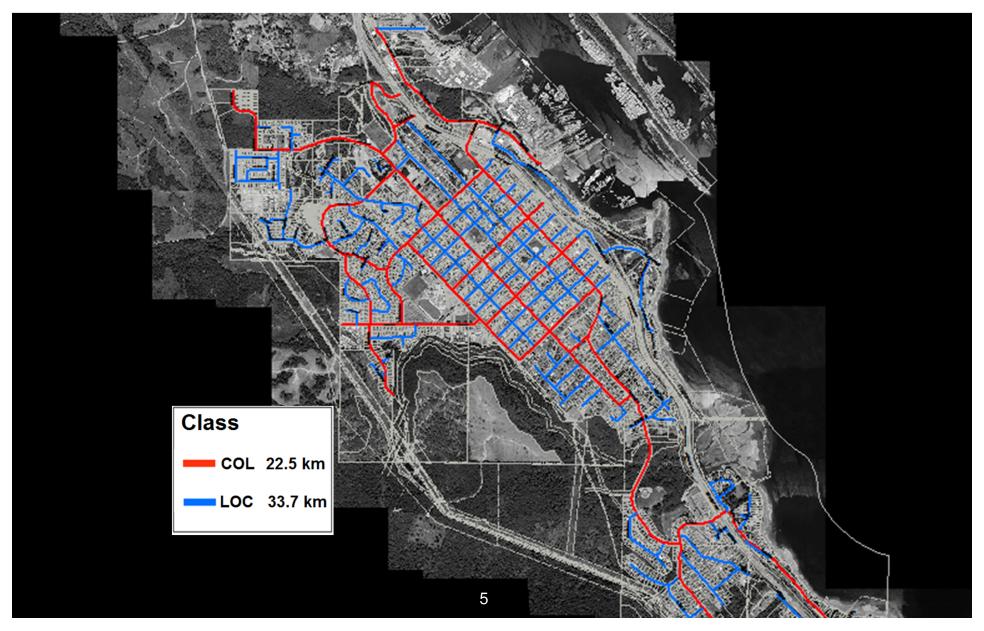
- Current pavement condition assessment;
- Link data and condition results to GIS;
- Update analysis to reflect current construction pricing;
- Analysis of paved roads based on data collected in 2015;
- Determine the optimal annual funding level that will indefinitely sustain the quality and value of the pavement network.

Project Definition

The Town of Ladysmith now has approximately **57 centreline-km** of streets consisting of **collector** and **local roads** (not including laneways and Provincial Highways)

Dood Olege		Road lane-km			
Road Class	Asphalt	Gravel	Total	Total	
Collector	22.5	0.13 22.6		45.4	
Local	33.7	33.7 0.75		69.0	
Network	56.2	0.88	57	114.4	

Project Definition


Paved Collectors and Local roads

Project Definition

Paved Collectors and Local roads

Pavement Data Collection

Tetra Tech EBA collected pavement condition data with the **Pavement Surface**

Profiler (PSP-6000) vehicle on 78.7 lane-km of the Town's network in April 2015

complex world

Pavement Data Collection

Tetra Tech EBA collected pavement condition data with the Pavement Surface Profiler (PSP-6000) vehicle on 78.7 lane-km of the Town's network in April 2015

Pavement Surface Distress (All Network)

Road Roughness (IRI) and Rut depth (Collector Roads)

Right-of-Way (ROW) Image log (All Network)

complex world CLEAR SOLUTIONS

Pavement Condition Indices

Pavement Cracking Indices

- Fatigue Crack Area AFCA (%)
- Thermal Crack Area TCA (%)
- ◆ All Crack Area (%) ACA (%) =AFCA+ TCA

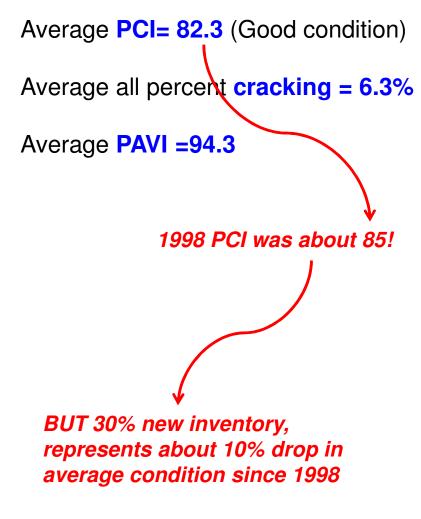
Roughness and Rutting indices

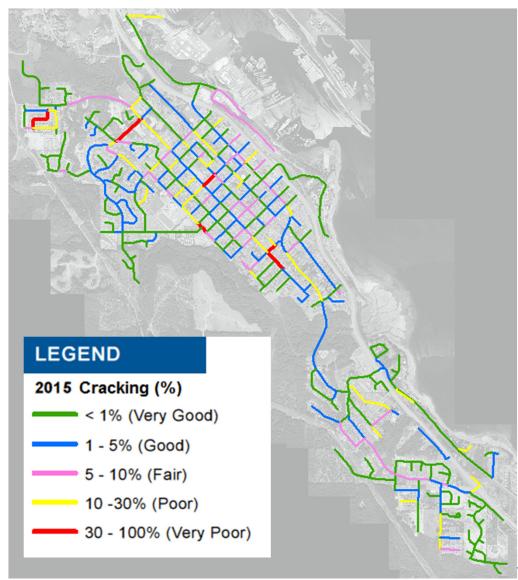
- International Roughness Index— IRI (mm/m)
- Average Pavement surface ruts RUT (mm)

Composite Indices

- Pavement Condition Index PCI
- Pavement Asset Value Index PAVI

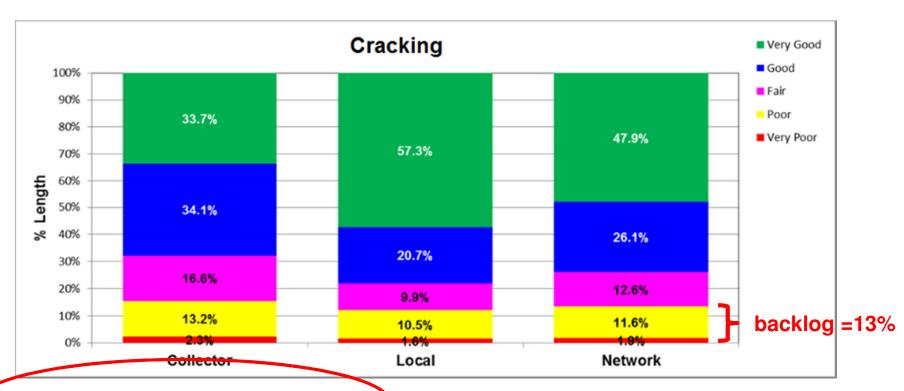
Pavement Condition Indices


Index Ranges for Condition Descriptions


Rating	Cracking Index Range (%)	IRI Index Range (mm/m)	PAVI	Colour Code
Very Good	0-1	< 1.8	99-100	
Good	1-5	1.8 - 2.5	94-99	
Fair	5-10	2.5 -3.5	83-94	
Poor	10-30	3.5 - 6.5	60-83	
Very Poor	30-100	> 6.5	< 60	

Backlog!

2015 Road Network Conditions



2015 Road Network Conditions

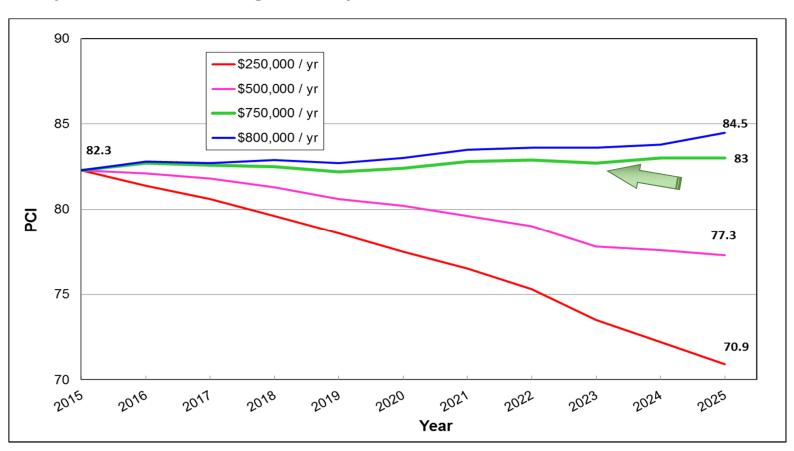
The road segments in **poor to very poor condition** are defined as "**backlog roads**".

The Backlog was 2% in 1998

Analysis Methodology

Treatment Types and Costs

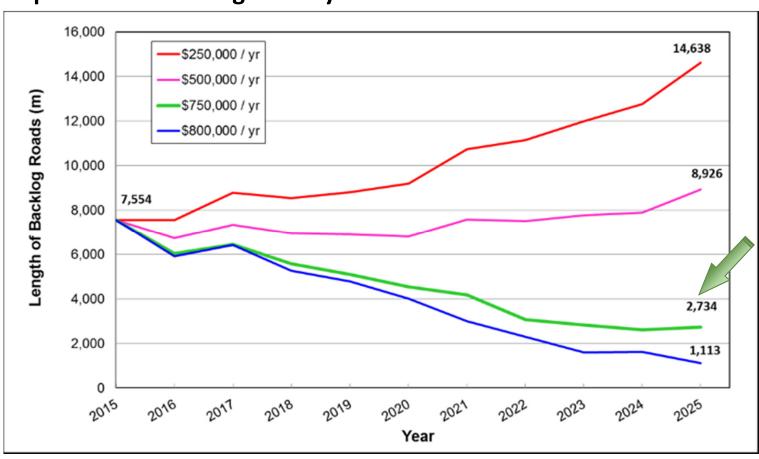
Treatment	Unit Cost		
Crack Sealing	\$5/L-m		
Shallow Patching	\$15/m²		
Overlay (50 mm)	\$22/m² +(Crack Area Patching Cost*)		
Mill and Fill (50 mm)	\$30/m² + (Crack Area Patching Cost*)		
Reclaim	\$50/m²		
Reconstruction	\$100/m²		
Subsequent Rehabilitations	\$22/m² (no curb) or \$30/m² (with curb)		


Budget Scenarios

Budget	Average Annual Funding Average Over 10-Years			
Scenario	Rehabilitation	Maintenance		
\$250,000	\$130,000	\$120,000		
\$500,000	\$400,000	\$100,000		
\$750,000	\$670,000	\$80,000		
\$800,000	\$730,000	\$70,000		

Analysis Results

Required Annual Budget Analysis

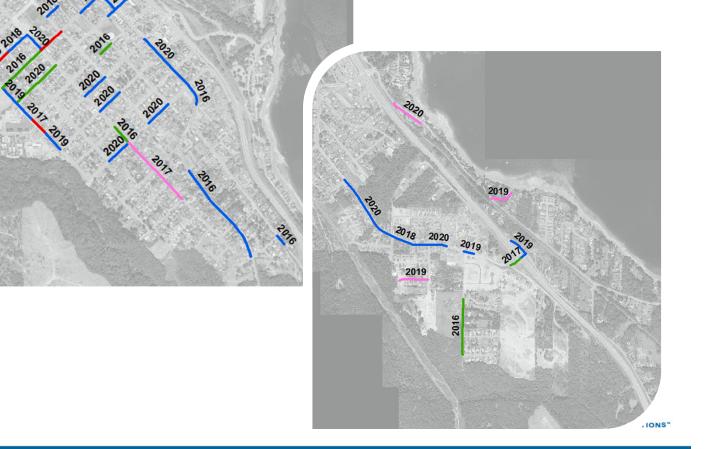


PCI is expected to remain about 83 with Annual Budget of \$750,000

Analysis Results

Required Annual Budget Analysis

The backlog length is reduced from **7.5 km** in 2015 to **2.7 km** in 2025 with **\$750,000** annual budget


complex world

5-year Rehabilitation Program (\$750,000 per year)

Analysis Results

Pavement Program Summary

Backlog

❖ 7.5km of pavements requiring replacement, 15-20 year program required to clear backlog (to approx 2028 at \$750k/yr);

Sustainable Repair/Replacement

❖ After backlog is cleared, about \$500k/yr funding required to maintain pavement inventory at current state;

Maintenance

\$100k/yr required for patching and crack sealing, \$60k in current budget;

Pavement Program Summary

5 Year Program

❖ 8.0km of pavements requiring replacement, 3.3 Million, \$660k/yr;

18 Year Program

 27.8km of pavements requiring replacement, 11.4 Million, \$630k/yr;

GIS/Asset Management

GIS

Geographic Information Systems (GIS) combine tabular data (pavement conditions) with geographic data (linear assets);

Autocad/Excel

❖ The Town has maintained some geographic (as-built) data for Sewer, Water, and Storm sewers in autocad, and basic condition data in excel over the last 5-10 years;

Asset Management

❖ In anticipation of the move to a GIS based asset management system, the autocad and excel utility data is in the process of being transferred to GIS, along with the new pavement management data;

GIS/Asset Management

- Why combine this data?
 - Allows the merging of different types of data into one environment;
 - Allows other types of analysis to be performed on the data without data duplication (i.e. sewer and water modelling);
 - Allows for a standardized method or policy of asset management;
 - Standardizes and simplifies training;
 - Is much easier to understand!

Other Utilities

In most of the projects contained in the 5 Year Paving Plan, other utilities will require replacement at the same time!

- Sanitary Sewers
 - ❖ 19.3km out of 69.2km may need replacement (28%)
- Watermains
 - 22.1km out of 84.3km will need replacement (26%)
- Storm Drainage
 - ... In progress, data being transferred....

5 Year Infrastructure Improvement Plan

Draft 1 Nov 30, 2015

Project Group Number	Location	Paving	Water	Sanitary	Storm	(Paving and Storm)	Total Budget
1 Total	1st Ave: Gatacre - Forward Rd	\$158,453		,	\$211,828		,
2 Total	Walkem: 4th Ave - Stillin Dr	\$138,860		-	\$195,495		
3 Total	4th Ave: Symonds - Walkem Rd	\$172,257	- ,		\$197,026		
4 Total	Symonds: 4th Ave - Stillin Drive	\$151,045	\$64,451	\$0	\$240,412	\$391,458	
5 Total	6th Ave: Buller - Symonds	\$84,707	\$170,215	\$0	\$105,659	\$190,366	\$360,580
6 Total	Buller: 6th Ave - 3rd Ave	\$228,474	\$173,852	\$0	\$205,193	\$433,667	\$607,518
7 Total	6th Ave: Baden Powell to Buller	\$277,821	\$201,507	\$0	\$210,807	\$488,628	\$690,135
8 Total	Total 4th Ave : Belaire-White		\$153,440	\$26,950	\$147,004	\$240,300	\$420,690
9 Total	4th Ave Extension: Hambrook-Belaire	\$74,100	\$0	\$53,968	\$99,534	\$173,634	\$227,602
10 Total	10 Total Dogwood: Stevenson to Gifford		\$0	\$176,779	\$266,955	\$405,099	\$581,878
Grand Total		\$1,517,158	\$1,351,403	\$257,697	\$1,879,912	\$2,991,971	\$4,424,291
Annual Cost: 3 Year progam		\$505,719	\$450,468	\$85,899	\$626,637	\$997,324	\$1,474,764
Annual Cost: 5 Year program		\$303,432	\$270,281	\$51,539	\$375,982	\$598,394	\$884,858

5 Year Infrastructure - Capital "Placeholder" projects

	Year	Paving	Water	Sanitary	Storm	(Paving and Storm)	Total Budget
	2016	\$600,000*	\$200,000	\$300,000	\$300,000	\$900,000	\$1,400,000
	2017	\$450,000	\$200,000	\$300,000	\$300,000	\$750,000	\$1,250,000
	2018	\$500,000	\$200,000	\$300,000	\$300,000	\$800,000	\$1,300,000
	2019	\$500,000	\$200,000	\$300,000	\$300,000	\$800,000	\$1,300,000
	2020	\$500,000	\$200,000	\$300,000	\$300,000	\$800,000	\$1,300,000
Total		\$2,550,000	\$1,000,000	\$1,500,000	\$1,500,000	\$4,050,000	\$6,550,000
Avera	ge	\$510,000	\$200,000	\$300,000	\$300,000	\$810,000	\$1,310,000

^{* 4&}lt;sup>th</sup> Ave Reconstruction, slated for 2016, design in 2015

Project Delivery Model

It is recommended that projects are:

- Organized into logical project groupings;
- Designed by a Consultant (RFP) in year one;

Tendered conventionally, and constructed in year two.