

2014

Annual Water Report

Prepared by: Town of Ladysmith Infrastructure Services Department

Table of Contents

1.	Introduction	1
2.	Service Area & Sources	2
2.1	Ladysmith Water System - Distribution	3
3.	Water Licensing	6
4.	Water Consumption	7
5.	Drinking Water Regulations	10
5.1	Canadian Drinking Water Quality Guidelines	10
5.2	BC Regulations	10
5.3	Island Health Authority Requirements	11
6.	Water Quality Monitoring Program	13
6.1	Physical Parameters	14
6.2	Chemical Parameters	19
6.3	Other Chemical Parameters	22
6.4	Microbiological Parameters	23
6.5	Miscellaneous Parameters	24
7.	Watershed Management	27
7.1	Security	27
8.	Routine Maintenance Program	28
8.1	Distribution	28
8.2	Source Intakes	28
8.3	Reservoirs	28
8.4	Pump Stations	28
9.	Capital Planning	29
Арре	endix A – Canadian Drinking Water Quality Guidelines	30
Арре	endix B – Water Quality Test Results – 2014	46
Арре	endix C – Haloacetic Acids in Domestic Water Supplies	49
Арре	endix D – Ministry of Health – Microbiological Results, 2013	522
Appe	endix E – Permit To Operate	566

List of Tables

Table 1 - Town Water Licences	6
Table 2 - CVRD Water Licenses	6
Table 3 Town of Ladysmith Water Consumption, 2002-2014 (In thousands of cubic meters)	8
Table 4 Water Testing Frequencies	. 13
Table 5 Blended Water (Either Stocking Lake, or Chicken Ladder)	. 14
Table 6 Holland Lake Turbidity Summary (NTU)	. 15
Table 7 Stocking Lake Continuous Turbidity Results	. 16
Table 8 Holland Creek (at Chicken Ladder) Measured Turbidity Results	. 17
Table 9 Holland Lake – Other Physical Results	
Table 10 Holland Creek (Chicken Ladder) – Other Physical Results	. 18
Table 11 Stocking Lake – Other Physical Results	
Table 12 Metals, Hardness Testing –	. 19
Table 13 Holland Lake - Other Chemical Results	. 22
Table 14 Holland Creek (Chicken Ladder) - Other Chemical Results	. 22
Table 15 Stocking Lake - Other Chemical Results	. 22
Table 16 Source (Untreated) Water E-Coli and Total Coliform Results Holland Lake	. 23
Table 17 Source Water E-Coli and Total Coliform Results Holland Creek (Chicken Ladder)	. 23
Table 18 Source Water E-Coli and Total Coliform Results Stocking Lake	. 24
Table 19 THM Formation in Water System, in mg/L	
Table 20 Total HAA Formation in Water System, in mg/L	. 24
Table 21 THM Component Results, in mg/L	. 25
Table 22 – Long Term Capital Plan	. 29

List of Figures

Figure 1	System Overview	5
Figure 2	Water Consumption 2002 - 2014	7

1. Introduction

The 2014 Annual Water Report provides an overview of the Town of Ladysmith water system (water sources, maintenance programs & capital improvements) and summarizes the annual water quality and production data. All water suppliers, under their Operating Permit, are required to provide an annual water report to the Vancouver Island Health Authority. This report is also posted on the municipal web site at <u>www.ladysmith.ca</u>.

2. Service Area & Sources

The Town of Ladysmith's water is drawn from two sources, which provide water through separate facilities at the mid/north and south ends of Town. The community is supplied in part by the Holland Lake and Holland Creek Watershed which enters the water supply system at a diversion point at the Chicken Ladder Intake, a small stilling basin located approximately 2.5 km. from the Public Works yard, as well as from Stocking Lake, located south of the Town. Both of these supplies are now piped directly to the enclosed Arbutus Reservoir, where it is chlorinated and distributed by gravity to the entire Ladysmith service area and the Diamond Improvement District.

Holland Lake

The Holland Lake reservoir was constructed in 1979 at the location of two original lakes approximately 5 km west of the Town in a 'regulated access' watershed – it consists of two earth filled embankments, providing 1,600,000 cm of live storage. The reservoir currently discharges through a 450mm dia. steel pipe located 6.0 meters (19.7 feet) below the spillway elevation. There is a small remotely operated valve that controls discharge into Holland Creek, which augments base flows in Holland Creek, and enters the Town's water system at Chicken Ladder, located approximately 1 km west of the Arbutus reservoir. The dam is in good condition, and receives regular maintenance in accordance with current Provincial Dam Safety Standards. The dam is rated a high risk structure in accordance with the Provincial Dam Classification system. In late 2012, a remote turbidity meter was installed at the dam to measure turbidity year round. Annual dam inspections were carried out in 2014 and did not find any issues with either dam.

The Holland Lake reservoir is located predominately in active forestry lands owned by TimberWest Forest Corporation (TimberWest). The majority of lands contributing to the lower reaches of Holland Creek upstream of Chicken Ladder Intake is crown land managed forest. The Town owns the Holland Lake perimeter, while the lands contributory to the Lake is owned by TimberWest.

Logging Roads exist throughout the area, but are gated and signed to restrict public access to the Town's Lakes and Intakes. The public use the watershed for walking, and other related recreational activities, however, camping and water use at Holland and Stocking Lakes is restricted.

Chicken Ladder Intake (Holland Creek)

The Chicken Ladder Intake was constructed on Holland Creek in the 1960's, when the lower Holland Dam water intake that was originally constructed by the Ladysmith Water Company was relocated due to the need for higher operating pressures in the system. At that time, an earthen open reservoir was constructed adjacent to Holland Creek under the Power Lines, and a chlorination building was constructed at the same time. The earthen open reservoir was subsequently filled in and replaced with a 5,700 cm concrete covered reservoir in 2008, and the replacement of the chlorination building is under way in 2013/2014, which will be located on the site of the old open reservoir. The Chicken Ladder Intake is located next to a well-used trail, and is considered to represent a moderately high risk for public access due to poor site security and constrained site access due to topography. The site is signed and marked restricting public access, but the remoteness of the location results in less than ideal site security.

Stocking Lake

Stocking Lake was built in the 1920's, by the Ladysmith Water Company, which was subsequently taken over by the Town. The Lake serves both the Town, as well as the Saltair area (Cowichan Valley Regional District). The Intake, which is shared by both water jurisdictions, is a 900mm dia. steel pipe located 5.0 meters (16.4 feet) below the spillway elevation. The dam is in 'fair' general condition, but has a documented seepage issue that dates back to the 1980's. The amount of seepage does not appear to change from year to year, however, discussions have commenced between the CVRD and the Town to repair the leak by adding additional embankment and enhance the stability of the structure. The dam is rated a low risk structure in accordance with the Provincial Dam Classification system.

The Stocking Lake area also is frequented by ATV users and occasional campers, as there is evidence of vandalism in the area. There is a trail system that travels the length of the Lake. The contributing areas of the Watershed are owned by TimberWest, the Crown, the CVRD, and the Town.

Arbutus Reservoir

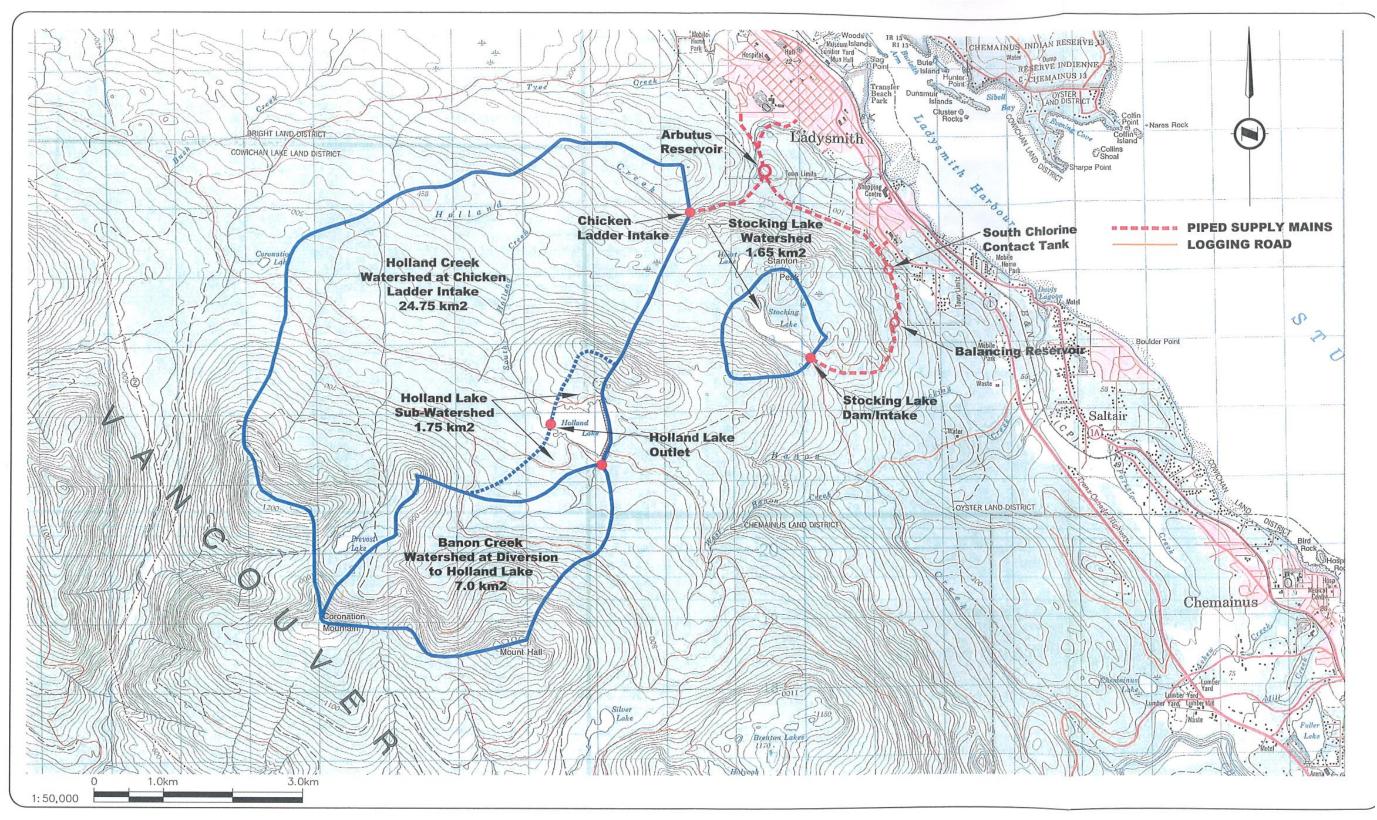
The Arbutus Reservoir, 5,700 cu meters in capacity, currently provides daily peaking for the Town. As of the fall of 2012, both the North as well as the South portions of Ladysmith are served from the Arbutus Reservoir.

Figure one shows the general layout of the Watersheds and major storage and intake structures.

2.1. Ladysmith Water System - Distribution

The topography of the Town of Ladysmith slopes steeply towards the waterfront, resulting in a large range in the water pressures within the Town's water system. With the completion of the covered Arbutus Reservoir in 2008 and subsequent increase in distribution pressure (32psi), the Town introduced two specific pressure zones within the system with the installation of four pressure reducing stations. Future development above the 121 (approximate) meter contour will require the construction of additional reservoirs and pumping facilitates.

The distribution system for the Town consists of over 61 km of water main of varying sizes from 100mm to 250 mm. The mains are made of cast iron piping, asbestos cement piping or PVC piping. The cast iron and the asbestos cement piping (approximately 21 km) are located mainly in the older section of Town and within the area that was amalgamated from Saltair


in 1985. The majority of the asbestos cement piping is 100 mm in diameter and needs to be replaced to allow for adequate flows throughout the system.

The Town has been actively working on a replacement program since 2000. Fire hydrants are situated throughout the distribution system at a spacing to offer adequate fire flows for all properties.

The Town has had access to computer modelling software for monitoring static and dynamic water pressures within the system.

The Town is nearing the completion of the replacement of the existing gas chlorination system with a new gas system, with provision to possibly manufacture chlorine in the future. The project is part of a multi-phase project to improve water treatment for the Town. This is discussed later in the Report.

Figure 1 System Overview

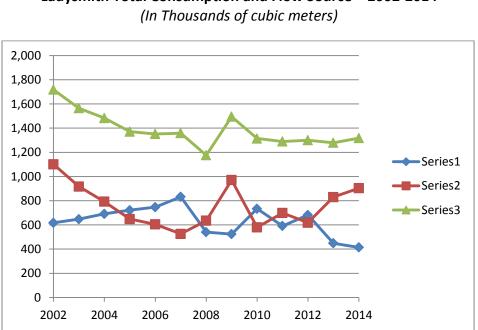
3. Water Licensing

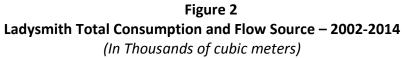
The Town currently holds the following Water Licenses:

				vater Licenses		
License	Туре	Annual Storage (cm, or Diversion (cm/yr)	Max Day Flow (Cu m)	Location	Date of Original Issuance	Comments
CL 017746	Diversion	995,000		Holland Creek (Chicken Ladder)	1946	Whole Year
CL 029821	Storage	123,348		Holland Creek (Chicken Ladder)	1962	Original earth reservoir (Now replaced with Arbutus Reservoir)
CL 125167	Diversion		3,640 cm/ day	Banon Creek	1977	Replaces 112813 Diversion
CL 125167	Storage	1,820,000		Holland Lake	1977	Replaces 112813 Storage, updated to allow Holland to Stocking Pipeline
CL 112812	Storage	246,700		Holland Lake	1952	Replaces 21164
CL 005333	Diversion	Either: 829,000, or 454,000*		Stocking Lake	1902	Max 2,273 cm/ day

*Under review by TOL staff

Of relevance to the Town, the Cowichan Valley Regional District (CVRD) also holds water licenses on Stocking Lake as follows:


Table 2 -	CVRD V	Nater	Licenses
-----------	--------	-------	----------


License	Туре	Annual Storage (cm, or Diversion (cm/yr)	Max Day Flow (Cu m)	Location	Date of Original Issuance	Comments
CL 67482	Diversion	476,000		Stocking Lake	1984	All year, replaces 61318
CL 67481	Diversion	447,000		Stocking Lake	1955	All year, replaces 28487
CI 67484	Storage	542,000		Stocking Lake	1984	

4. Water Consumption

The Town used 1,317,000 cubic meters of water in 2014, an increase of 2.0% over 2013., but still considerably less than the consumption in 2002 (1.7M cu m). This reflects a trend that has been occurring at the Town since residential water metering was introduced in 2006. The Town is using approximately 25% less water now than 11 years ago (2002 annual consumption was 1,700,000 cu m). During the same period, the Town has grown over 20%, resulting in a net reduction of per capita water consumption in the order of 45%.

A summary of water consumption by month, including the flow splits between Stocking Lake and Chicken Ladder Intake (Holland Creek) follows on the next page, and is illustrated as follows:

The general downward trend in water consumption is likely the result of the Town's decision to install residential water meters in 2006, as well as its progressive block pricing rate structure for single family residential water accounts. The Town has also been encouraging water conservation through programs such as a toilet rebate program, which would also have a downward impact on consumption.

Flow Split between Holland and Stocking Lakes

Over the last 10 years, the Town has used roughly equal amounts of water from Holland and Stocking Watersheds. This has occurred primarily for two reasons: Firstly, until the fall of 2012, portions of South Ladysmith were not able to be fed of the Holland Watershed due to piping

Table 3 Town of Ladysmith Water Consumption, 2002-2014

(In thousands of cubic meters)

																													1		
Year		Totals		Jan		Feb			Mar	Ap	or		May		Jun			Jul			Aug		Sep		Oct		Nov		L	Dec	
	Stocking I	Holland Total	Stocking	Holland Total	Stocking	Holland	Total	Stocking H	olland Total	Stocking Holl	and Total	Stocki	ng Holland	Total	Stocking Hollan	d Total	Stocking	Holland	Total Sto	ocking H	Holland Total	Stocking	Holland Total	Stocking	Holland Total	Stocking	Holland	Total	Stocking H	Holland	Total
2002	617,296	1,100,875 1,718,171	111968	2,264 114,232	100,195	1,394	101,589	78,008	34,171 112,179	62,632 47,	733 110,3	65 17,9	95 125,668	143,663	21,394 176,14	8 197,542	21,882	196,468	218,350 2	22,170	207,387 229,557	14,772	148,083 162,855	9,349	113,103 122,452	80,058	21,788	101,846	76,873	26,668	103,541
2003	647,416	917,405 1,564,821	100,662	7,247 107,909	90,423	14,607	105,030	84,301	23,926 108,227	91,124 10,	682 101,8	06 10,84	48 121,234	132,082	19,948 185,55	2 205,500	22,979	193,965	216,944 1	L4,703	155,289 169,992	8,381	103,237 111,618	54,219	46,953 101,172	48,870	52,404	101,274	100,958	2,309	103,267
2004	691,495	792,116 1,483,611	112,122	3,034 115,156	103,451	1,804	105,255	102,936	1,394 104,330	36,314 80,	001 116,3	15 13,28	81 139,794	153,075	14,273 142,29	8 156,571	21,368	149,839	171,207 1	L4,275	138,457 152,732	24,800	83,978 108,778	52,905	48,609 101,514	97,483	2,908	100,391	98,287	0	98,287
2005	721,864	648,749 1,370,613	112,512	0 112,512	98,561	0	98,561	100,595	0 100,595	89,583 7,	981 97,5	64 45,73	36 76,963	122,699	11,427 116,53	6 127,963	15,125	134,275	149,400 2	20,243	152,390 172,633	16,166	117,875 134,041	45,123	42,729 87,852	74,729	0	74,729	92,064	0	92,064
2006	746,986	604,784 1,351,770	102,631	0 102,631	76,455	685	77,140	89,795	0 89,795	85,449	0 85,4	49 121,5	79 11,105	132,684	49,761 84,32	8 134,089	21,804	161,679	183,483 2	21,047	154,831 175,878	24,796	107,794 132,590	17,329	84,362 101,691	76,528	0	76,528	59,812	0	59,812
2007	832,033	526,018 1,358,051	108,909	2,457 111,366	97,763	151	97,914	102,277	167 102,444	98,558 3,	665 102,2	23 66,48	89 60,609	127,098	21,794 125,90	9 147,703	27,653	140,573	168,226 2	25,391	60,630 86,021	17,062	101,539 118,601	86,800	10,537 97,337	72,907	18,868	91,775	106,430	913	107,343
2008	540,694	635,254 1,175,948	76,184	0 76,184	34,923	0	34,923	62,425	0 62,425	33,470	0 33,4	70 60,9	08 50,964	111,872	20,479 118,27	6 138,755	33,517	163,049	196,566 2	21,843	127,803 149,646	22,965	86,132 109,097	78,629	7,544 86,173	63,738	18,135	81,873	31,613	63,351	94,964
2009	524,043	970,807 1,494,850	52,486	43,323 95,809	29,762	55,809	85,571	41,905	18,230 90,135	38,626 80,	462 119,0	88 29,8	13 133,864	163,677	35,621 160,22	1 195,842	31,068	158,057	189,125 2	25,602	125,827 151,429	24,434	82,249 106,683	61,179	35,006 96,185	99,150	2,462	101,612	54,397	45,297	99,694
2010	733,566	580,294 1,313,860	94,215	530 94,745	66,683	18,763	85,446	53,712	51,296 105,008	57,555 28,	567 86,1	22 54,03	36 47,938	101,974	37,272 74,37	2 111,644	26,349	144,144	170,493 2	23,241	126,648 149,889	42,940	65,322 108,262	85,101	8,465 93,566	94,679	3,077	97,756	97,783	11,172	108,955
2011	591,114	698,476 1,289,590	98,832	0 98,832	49,254	34,450	83,704	77,705	17,925 95,630	52,997 36,	900 89,8	97 66,70	02 30,816	97,518	15,036 115,01	8 130,054	18,591	134,989	153,580 2	20,409	139,897 160,306	28,537	89,158 117,695	77,843	12,664 90,507	48,756	35,708	84,464	36,452	50,951	87,403
2012	681,701	618,568 1,300,269	73,561	14,887 88,448	79,886	338	80,224	90,632	0 90,632	85,575	0 85,5	75 31,73	34 79,788	111,522	13,780 103,43	5 117,215	20,065	137,006	157,071 2	22,632	141,874 164,506	19,063	105,250 124,313	64,611	35,990 100,601	88,055	0	88,055	92,107	0	92,107
2013	448,751	830,005 1,278,756	89,759	0 89,759	86,235	0	86,235	92,544	2,981 95,525	46,305 38,	418 84,7	23 15,1	66 92,829	107,995	23,506 94,52	8 118,034	1,922	168,656	170,578	1,333	148,963 150,296	11,610	94,429 106,039	20,307	70,124 90,431	52,620	30,010	82,630	7,444	89,067	96,511
2014	413,948	903,369 1,317,317	31,772	68,018 99,790	52,492	35,031	87,523	80,922	4,046 94,968	17,730 64,	829 82,5	59	36 107,338	107,374	2,641 141,99	3 144,634	5,304	165,286	170,590	737	144,087 144,824	1318	112709 114,027	62,218	27,180 89,398	66,068	22,852	88,920	92,710	0	92,710

and chlorination equipment considerations. In 2012, a two way interconnecting pipe system was installed to connect the Stocking Lake supply line directly to the Arbutus Reservoir. Upon completion of this project, the old chlorination facility servicing South Ladysmith was taken out of service, and all chlorination is now taking place near the Arbutus Reservoir. This has had the effect of allowing an additional 100,000 cubic meters of Holland Creek water to be able to serve South Ladysmith during times when Holland Creek has acceptable turbidity levels.

5. Drinking Water Regulations

In Canada, drinking water is regulated by the Provincial and Local Governments. While the Federal Government, Health Canada, performs research and publishes recommendations for safe drinking water, each Province has the responsibility to regulate drinking water (in British Columbia [BC], the Ministry of Health has this responsibility). Locally, each water supplier also complies with the local Health Authority requirements (The Town of Ladysmith is under the jurisdiction of the Vancouver Island Health Authority [VIHA]).

This section presents the Federal recommendations, as well as the BC regulations and requirements from the VIHA.

5.1. Canadian Drinking Water Quality Guidelines

The Guidelines for Canadian Drinking Water Quality are established by the Federal-Provincial-Territorial Committee on Drinking Water and are published by Health Canada (Ref. 8). They are regularly revised, based on the latest research results. The Guidelines are intended to be used as benchmarks for the Provinces.

The Guidelines consider more than 100 parameters that can, potentially, be found in Canadian drinking water sources: bacteriological pathogens; physical and chemical contaminants, including metals, inorganics, pesticides, and other organics; as well as radionuclides. The Guidelines establish two types of limits for these contaminants. The Maximum Acceptable Concentration (MAC) is based on health considerations, while the Aesthetic Objective (AO) is based on aesthetic considerations.

Appendix A provides the latest revision (June 2012) of the Canadian Drinking Water Guidelines.

5.2. BC Regulations

In BC, drinking water is regulated by the British Columbia Drinking Water Protection Regulation (2003) and the Drinking Water Protection Act (2001) (Refs. 1 and 2, respectively).

The BC Ministry of Health is primarily concerned with bacteria. Escherichia coli and fecal coliforms must not be detected. Total coliforms must not be detected 90 percent of the time, and if detected, they must be less than 10 counts per 100 mL.

The regulations also provide monitoring frequency requirements. They vary with the number of served population. For a water supply system that serves between 5,000 and 90,000 people, it is required that 1 sample per 1,000 people be collected per month. For Ladysmith, which currently serves 8,000 people, 8 samples per month are required. Moreover, the bacteriological analyses must be performed by a laboratory which has been approved by the BC Ministry of Health.

Other requirements include reporting. The water supplier must make public an annual report showing the results of the monitoring. Also, if the standards are not met, the laboratory must immediately inform the health officer and the water supplier. The water supplier must then give a public notice of non-potable water.

The regulations also require certification for water systems operators. This will be discussed in section 8.0 of the report.

5.3. Island Health Authority Requirements

The Town must also comply with the local Health Authority requirements. VIHA officers evaluate and assess new sources of water for public use, make recommendations for operating permits, review water quality monitoring data, and inspect water systems.

VIHA has issued two policies regarding drinking water quality. The *Guidelines for the Approval of Water Supply Systems* was issued in 2006 and provides treatment requirements and recommendations on water quality testing before the approval of any new water supply system.

The *Drinking Water Treatment for Surface Water Supplies Policy*, or 4-3-2-1 Policy, was issued at the end of 2007 and refers to treatment requirements for water systems supplied by surface water. Both are discussed below.

Guidelines for the Approval of Water Supply Systems

VIHA *Guidelines for the Approval of Water Supply Systems* require that before the submission for approval of new water supply system, raw water be characterized for the following parameters:

- Microbiological pathogens: total coliforms, non-coliform bacteria, Escherichia coli,
- heterotrophic plate count
- Physical parameters: colour, conductivity, pH, turbidity
- Chemical parameters: alkalinity, corrosiveness, hardness, organic nitrogen, total
- dissolved solids (TDS), total organic carbon (TOC), ammonia, chloride, fluoride, nitrate,
- nitrite, sulphate, arsenic, selenium, and other metals
- The guidelines also require treatment providing the following levels:
- 3 log inactivation or reduction for Cryptosporidium and 3 log inactivation or reduction for Giardia
- 4 log inactivation or reduction for viruses and bacteria
- Minimum CT factor of 12 min.mg/L and chlorine residual of 0.2 mg/L
- Disinfection by-products (trihalomethanes [THMs], haloacetic acids [HAAs], chlorite and bromate) at acceptable levels
- Acceptable colour, odour, and taste

Drinking Water Treatment for Surface Water Supplies Policy

More recently, VIHA issued the *Drinking Water Treatment for Surface Water Supplies Policy* which has stricter requirements on treatment for water systems supplied by surface water. Treatment goals for surface water systems are the following:

- 4 log inactivation or removal of viruses;
- 3 log inactivation or removal of *Cryptosporidium* and *Giardia*;
- 2 treatment processes (usually filtration and disinfection);
- 1 ntu turbidity maximum in the finished water;
- Filtration deferral may be permitted under the following conditions:
 - Turbidity be less than 1 ntu 95 percent of the time, and peak turbidity readings be less than 5 ntu for no more than 2 days in a 1-year period;
 - No more than 10 percent of raw water samples exceed 20 Escherichia coli/100 mL in any 6-month period;
 - Two primary disinfectants be used; the two together need to achieve the 4 log inactivation or reduction of viruses and 3 log inactivation or reduction of *Cryptosporidium* and *Giardia*;
 - Effective ongoing Watershed protection;

As well, the VIHA may require additional treatment to address the following:

- High bacterial counts or risks of fecal contamination of source water;
- High organic matter that may result in unacceptable levels of disinfection byproducts;
- Chemicals or other contaminants that may affect potability.

In 2009, The Town retained Koers and Associates to produce a Drinking Water System Assessment report which identified specific actions that the Town were to take to manage a number of potential risks associated with our water system. These risks included:

- Physical Priority Improvements;
- Water Quality Monitoring;
- Longer term Actions.

These actions have been the focus of efforts by the Town to meet the 4-3-2-1 water quality objectives laid out by VIHA since 2009. However, recent water quality test results, particularly related to turbidity at Holland Lake, recent e-coli raw water sampling, and continuing issues with higher levels of Haloacetic Acids in the water distribution system has resulted in the Town making the decision to proceed with filtration in April of 2014. The Town's Operating Permit was subsequently amended in June of 2014 to provide for the implementation of filtration, with a deadline for completion of the upgrade set to January 31, 2018. This project has subsequently been incorporated into the Town's capital plans.

6. Water Quality Monitoring Program

The Town monitors and records water quality parameters in general compliance with the requirements of our Operational Permit issued by VIHA. In 2009, Koers and Associates issued a Water Quality Monitoring Program Report (Ref 4) that guides the collection of a number of water quality parameters for the Town, summarized as follows:

ParameterHolland LakeChicken Ladder Intake (Holland Creek)Balancing Reservoir (Stocking Lake)Distribut SystemPhysical Parameters	
TurbidityWeekly or Continuous*Weekly or Continuous*Weekly or Continuous*Weekly or Continuous*Image: Continuous of Content of Content of Continuous of Content of Con	
IndustryContinuous* </th <th></th>	
Dissolved Organic carbon (DOC)MonthlyMonthlyMonthlyMonthlyTrue ColorWeeklyWeeklyWeeklyApparent ColorWeeklyWeeklyWeeklyTemperatureWeeklyWeeklyWeeklyUltraviolet Transmittance (UVT)Semi-MonthlySemi-MonthlySemi-MonthlyTotal Dissolved Solids (TDS)MonthlyMonthlyMonthlyMonthlyAlkalinityMonthlyMonthlyMonthlyMonthlyMonthlyPhysical ParametersMonthlyMonthlyMonthlyMonthlyMonthlyBromideMonthlyMonthlyMonthlyMonthlyMonthlyMonthlyHardnessSemi-AnnuallySemi-AnnuallySemi-AnnuallySemi-AnnuallySemi-AnnuallySemi-AnnuallyMicrobiological ParametersSemi-AnnuallySemi-AnnuallySemi-AnnuallySemi-AnnuallySemi-Annually	
True ColorWeeklyWeeklyWeekly	
Apparent ColorWeeklyWeeklyWeeklyTemperatureWeeklyWeeklyWeeklyAlong with realth SamUltraviolet Transmittance (UVT)Semi-MonthlySemi-MonthlySemi-Monthly-Total Dissolved Solids (TDS)MonthlyMonthlyMonthlyMonthlyMonthlyAlkalinityMonthlyMonthlyMonthlyMonthlyMonthlyPhysical ParametersMonthlyMonthlyMonthlyMonthlyMonthlyBromideMonthlyMonthlyMonthlyMonthlyMonthlyHardnessSemi-AnnuallySemi-AnnuallySemi-AnnuallySemi-AnnuallySemi-AnnuallyMicrobiological ParametersImage: AnnuallySemi-AnnuallySemi-AnnuallySemi-AnnuallySemi-Annually	
TemperatureWeeklyWeeklyWeeklyAlong with rehealth SameUltraviolet Transmittance (UVT)Semi-MonthlySemi-MonthlySemi-Monthly-Total Dissolved Solids (TDS)MonthlyMonthlyMonthlyMonthlyMonthlyChemical ParametersMonthlyMonthlyMonthlyMonthlyMonthlyAlkalinityMonthlyMonthlyMonthlyMonthlyMonthlyPhysical ParametersMonthlyMonthlyMonthlyMonthlyCalciumMonthlyMonthlyMonthlyMonthlyBromideMonthlyMonthlyMonthly-HardnessSemi-AnnuallySemi-AnnuallySemi-AnnuallySemi-AnnuallyTotal MetalsSemi-AnnuallySemi-AnnuallySemi-AnnuallySemi-Annually	
TemperatureWeeklyWeeklyWeeklyHealth SamUltraviolet Transmittance (UVT)Semi-MonthlySemi-MonthlySemi-Monthly-Total Dissolved Solids (TDS)MonthlyMonthlyMonthlyMonthlyMonthlyChemical ParametersAlkalinityMonthlyMonthlyMonthlyMonthlyMonthlyPhysical ParametersMonthlyMonthlyMonthlyMonthlyCalciumMonthlyMonthlyMonthlyMonthlyBromideMonthlyMonthlyMonthly-HardnessSemi-AnnuallySemi-AnnuallySemi-AnnuallySemi-AnnuallyMicrobiological Parameters </td <td></td>	
Total Dissolved Solids (TDS)MonthlyMonthlyMonthlyMonthlyChemical Parameters </td <td>-</td>	-
Chemical ParametersMonthlyMonthlyMonthlyMonthlyAlkalinityMonthlyMonthlyMonthlyMonthlyPhysical ParametersMonthlyMonthlyMonthlyMonthlyCalciumMonthlyMonthlyMonthlyMonthlyBromideMonthlyMonthlyMonthlyMonthlyHardnessSemi-AnnuallySemi-AnnuallySemi-AnnuallyTotal MetalsSemi-AnnuallySemi-AnnuallySemi-Annually	
AlkalinityMonthlyMonthlyMonthlyMonthlyPhysical ParametersMonthlyMonthlyMonthlyMonthlyCalciumMonthlyMonthlyMonthlyMonthlyBromideMonthlyMonthlyMonthlyMonthlyHardnessSemi-AnnuallySemi-AnnuallySemi-AnnuallyTotal MetalsSemi-AnnuallySemi-AnnuallySemi-Annually	/
Physical ParametersMonthlyMonthlyMonthlyMonthlyCalciumMonthlyMonthlyMonthlyMonthlyMonthlyBromideMonthlyMonthlyMonthlyMonthlyMonthlyHardnessSemi-AnnuallySemi-AnnuallySemi-AnnuallySemi-AnnuallyTotal MetalsSemi-AnnuallySemi-AnnuallySemi-AnnuallySemi-Annually	
CalciumMonthlyMonthlyMonthlyMonthlyBromideMonthlyMonthlyMonthlyMonthlyHardnessSemi-AnnuallySemi-AnnuallySemi-Annually-Total MetalsSemi-AnnuallySemi-AnnuallySemi-AnnuallySemi-AnnuallyMicrobiological ParametersImage: Comparison of the semi-AnnuallyImage: Comparison of the semi-AnnuallyImage: Comparison of the semi-Annually	/
BromideMonthlyMonthlyMonthly-HardnessSemi-AnnuallySemi-AnnuallySemi-Annually-Total MetalsSemi-AnnuallySemi-AnnuallySemi-AnnuallySemi-AnnuallyMicrobiological ParametersImage: Comparison of the semi-AnnuallyImage: Comparison of the semi-AnnuallyImage: Comparison of the semi-Annually	/
Hardness Semi-Annually Semi-Annually Semi-Annually Total Metals Semi-Annually Semi-Annually Semi-Annually Microbiological Parameters Image: Comparison of the semi-Annually Semi-Annually	/
Total Metals Semi-Annually Semi-Annually Semi-Annually Microbiological Parameters Semi-Annually Semi-Annually	
Microbiological Parameters	
	ally
E Coli Semi-Annually Semi-Annually Semi-Annually Semi-Annually	ally
Total Coliforms Semi-Annually Semi-Annually Semi-Annually Semi-Annually	ally
Regular Health Sampling ?	
Miscellaneous Parameters	
Total Extractable Hydrocarbons (T.E.H.) Following high turbidity events	
ComparisonQuarterly, or following high color eventsQuarterly, or following high color eventsQuarterly, or following high color events	lly
Chlorine Residual Along with relation bealth Sam	-
* Actual Turbidity Frequency Continuous Daily Continuous Continuous	us

Table 4 Water Testing Frequencies

Town of Ladysmith

The results of the annual lab tests (excluding turbidity and health Bacteriological testing) for Holland Lake, Stocking Lake, and Chicken Ladder Intake are detailed in Appendix F. Lab results are discussed in the following section.

6.1. Physical Parameters

a) Turbidity

The Town receives its source water from either Chicken Ladder Intake (on Holland Creek upstream of the Arbutus reservoir), or Stocking Lake. The Chicken Ladder Intake includes water being released from Holland Lake, as well as additional catchment water collected downstream from Holland Dam through the Holland Creek Watershed. The Town has the ability to 'switch' water supplies rapidly in response to turbidity events in either sources of supply, and hence has the ability to influence the water quality of water being delivered to the system, subject to total annual flow and time of year limitations set out by our respective water licenses. The table below provides the blended turbidity values for water that is used for the Ladysmith system. Details on the flow splits between Stocking and Chicken Ladder (Holland Creek) can be found in Section 4:

Month	Ave	High	Low	Days > 1 NTU	Days > 5 NTU	% Stocking Water	% Holland Water
January	0.332	0.781	0.000	0	0	31.8%	68.2%
February	0.324	0.660	0.000	0	0	60.0%	40.0%
March	0.344	0.580	0.000	0	0	85.2%	14.8%
April	0.362	0.600	0.230	0	0	21.5%	78.5%
May	0.329	0.470	0.260	0	0	0.0%	100.0%
June	0.485	0.840	0.330	0	0	1.8%	98.2%
July	0.480	0.640	0.370	0	0	3.1%	96.9%
August	0.411	0.640	0.136	0	0	0.5%	99.5%
September	0.174	0.320	0.140	0	0	1.2%	98.8%
October	0.422	0.820	0.080	0	0	69.6%	30.4%
November	0.328	0.500	0.000	0	0	74.3%	25.7%
December	0.470	0.720	0.420	0	0	100.0%	0.0%
Summary	0.372	0.840	0.000	0	0	31.4%	68.6%
				0.0%	0.0%		

Table 5 Blended Water	(Either Stocking Lake,	or Chicken Ladder)
Tuble 5 Biellaca Mater		

Our blended water easily meets the VIHA Guidelines for Surface Water Supplies for turbidity in 2014.

In addition to measuring turbidity in our 'managed' water supply, the Town also collects turbidity data for all of our sources of supply, irrespective of whether the supply is being utilized at the moment. This includes the continuously monitored turbidity meter at Holland Lake and Stocking Lake, as well as 'manual' field turbidity samples that are taken weekly by staff at both Stocking Lake, as well as our Chicken Ladder (Holland Creek) Intake. The results for 2014 are as follows:

Holland Lake

The results of our second full year of continuous Holland Lake turbidity monitoring are as follows:

Month	Ave	High	Low	Days > 1 NTU	Days > 5 NTU
January	0.868	1.766	0.599	5	0
February	0.646	1.444	0.556	0	0
March	0.745	2.27*	0.42	3	0
April	0.534	1.083	0.441	0	0
May	0.657	1.078	0.523	0	0
June	0.705	0.853	0.463	3	0
July	0.462	0.756	0.363	0	0
August	0.570	1.271	0.422	0	0
September	Resu	ults not av	ailable	0	0
October	0.755	1.949	0.409	6	0
November	1.055	1.169	1.012	6	0
December	1.060	1.190	0.860	26	0
Summary		6.142	0.000	34	0
* Sensor malfuncti	on results exclude	ed		9.3%	0.0%

Table 6 Holland Lake Turbidity Summary (NTU)

In order for the Town to successfully argue for a filtration deferral under VIHA guidelines, Holland Lake turbidity must not exceed 1 NTU more than 5% of the year (all but 18 days), and must not exceed 5 NTU 99.5% of the year (all but 2 days). Holland Lake turbidity did not exceed 5 NTU at any time of the year, but exceeded 1 NTU a total of 34 days in 2014, exceeding the maximum limit of 18 days by a factor of about 2. This reinforces the turbidity issue identified in the 2013 water quality report, which continues to indicate that the Town would not have been able to secure a filtration deferral if using Holland Lake water directly (piped). We expect that the higher turbidity is the result of the Lake turning over during winter snow and icing conditions, but we did see some sporadic turbidity events during the summer as well.

The results shown above represent automatic turbidity recordings, however, staff also recorded manual samples on an approximately bi-weekly basis during 2014, which generally correspond to the turbidity recorder readings noted above.

The results confirm that it is not likely that the Town could obtain a filtration deferral should the Town wish to use Holland Lake water 'directly' 100% of the time (i.e. by construction of a pipeline connecting the Town's supply pipelines to Holland Lake). It might be possible to selectively use Stocking Lake water during periods of time when the turbidity levels in Holland Lake are above 1 NTU, but this would likely be limited in the future by water licensing considerations at Stocking (currently under review).

Stocking Lake Turbidity

Stocking Lake generally produces water under 1.0 NTU during the entire year. The Town installed a continuous turbidity meter on the Stocking Lake system a number of years ago. With the exception of two days of readings higher than 1, attributable to instrument errors, the turbidity results for 2014 are under 1.0 NTU for all of the year.

Month	Ave	High	Low	Days > 1 NTU	Days > 5 NTU			
January	0.321	0.885	0.192	0	0			
February	0.314	0.500	0.166	0	0			
March	0.315	0.811	0.178	0	0			
April*	0.239	0.376	0.000	0	0			
May	0.270	0.347	0.183	0	0			
June*	0.331	0.727	0.180	0	0			
July	0.284	0.432	0.145	0	0			
August	0.166	0.422	0.000	0	0			
September	0.225	0.502	0.093	0	0			
October	0.371	0.729	0.175	0	0			
November	0.425	0.636	0.248	0	0			
December	0.469	0.832	0.408	0	0			
Summary	0.311	0.885	0.000	0	0			
* Two Days of ins	* Two Days of instrument error readings ignored 0.0% 0.							

Table 7 Stocking Lake Continuous Turbidity Results

Chicken Ladder Intake (Lower Holland Creek)

Staff visit Chicken Ladder Intake on a daily basis, and collects a turbidity sample during that inspection. The sampling for 2014 includes a total of 376 readings and samples tested, and are summarized below:

				Days > 1	
Month	Ave	High	Low	NTU	Days > 5 NTU
January	0.468	2.100	0.140	2	
February	0.664	1.860	0.170	7	
March	0.947	5.050	0.280	6	1
April	0.396	0.680	0.230		
Мау	0.336	0.470	0.260		
June	0.343	0.540	0.230		
July	0.314	0.460	0.230		
August	0.305	0.430	0.240		
September	0.335	0.580	0.220		
October	0.900	4.450	0.230	5	
November	0.559	1.050	0.559	1	
December	0.580	9.900	0.580	11	3
Summary	0.512	9.900	0.140	32	4
				8.8%	1.1%

Table 8 Holland Creek (at Chicken Ladder) Measured Turbidity Results

Staff monitor turbidity levels at Chicken Ladder on a regular basis, and are able to 'switch' water supplies rapidly when turbidity events occur (usually the result of high intensity rain storms occurring in the upper Holland Watershed). As a result, none of the high turbidity water from Chicken Ladder ended up in the water system in 2014.

The above results confirms that Chicken Ladder, similar to Holland Lake, will not meet the "raw water" criteria for filtration deferral as both the 1NTU and 5NTU limits were exceeded in 2014.

b) Organic Carbon, Color, Temperature, Ultraviolet Transmittance, Dissolved Solids

Results for Holland Lake, Stocking Lake, and Chicken Ladder are attached in Appendix B, and summarized as flows:

	No of					CDW Guideline	
Parameter	Samples	Units	Ave	High	Low	Guidenne	Comments
Total Dissolved							
Solids	9	Mg/L	19.38	25	<10	<500	ОК
РН	11	PH Units	6.43	6.5	6.2	6.5-8.4	ОК
True Color	40	Col Unit	10.09	20.0	5.0	<15 (AO)	OK 1 test too High
Apparent Color	40	Col Unit	13.07	20.0	5.0		
Dissolved							
organic Carbon	9	Mg/L	2.55	3.25	1.87	<5 (AO)	ОК
Total Organic							
Carbon	10	Mg/L	3.45	6.08	2.39	n/a	
Ultraviolet							OK – review for UV
Transmittance	17	AU/cm	84.04	87.2	78.5	>80 (AO)	Disinfection

Table 9 Holland Lake – Other Physical Results

(AO) Aesthetic Objective

Table 10 Holland Creek (Chicken Ladder) – Other Physical Results

	No of					CDW	
Parameter	Samples	Units	Ave	High	Low	Guideline	Comments
Total Dissolved							
Solids	9	Mg/L	23.11	37.0	16.0	<500	ОК
		PH					
PH	12	Units	6.66	6.9	6.4	6.5-8.4	ОК
		Col					
True Color	42	Unit	13.45	40.0	7.0	<15 (AO)	Color Issues
		Col					
Apparent Color	42	Unit	16.55	48.0	5.0		
Dissolved							
organic Carbon	10	Mg/L	2.68	3.86	1.34	<5 (AO)	ОК
Total Organic							
Carbon	11	Mg/L	3.28	5.33	2.02	n/a	
Ultraviolet							OK – review for UV
Transmittance	18	AU/cm	83.53	90.0	60.5	>80 (AO)	Disinfection

(AO) Aesthetic Objective

Parameter	No of Samples	Units	Ave	High	Low	CDW Guideline	Comments
	Samples	Units	Ave	підії	LOW		comments
Total Dissolved							
Solids	9	Mg/L	27.33	33.0	16.0	<500	ОК
		PH					
PH	12	Units	6.88	7.1	6.5	6.5-8.4	ОК
		Col					
True Color	41	Unit	9.24	13.0	5.0	<15 (AO)	ОК
		Col					
Apparent Color	40	Unit	12.61	19.0	5.0		
Dissolved							
organic Carbon	9	Mg/L	2.67	3.53	1.77	<5 (AO)	ОК
Total Organic							
Carbon	10	Mg/L	2.99	3.96	1.84	n/a	
Ultraviolet							
Transmittance	16	AU/cm	84.78	88.2	83.1	>80 (AO)	ОК

Table 11 Stocking Lake – Other Physical Results

(AO) Aesthetic Objective

The results meet the Canadian Drinking Water Guidelines, although some results, listed as aesthetic guidelines, may have a bearing on the design of water treatment facilitates.

6.2. Chemical Parameters

The Town is required to conduct bi-annual metals testing. Results for all three water sources are as follows in Table 12. All three water sources meet the Canadian Drinking Water Guidelines.

Maxxam ID		JZ8471	JZ8472	JZ8473		
Sampling Date		2014-07-03 8:00	2014-07-03 8:00	2014-07-03 8:40		
COC Number		08367831	08367831	08367831		
	UNITS	HOLLAND LAKE	STOCKING LAKE	CHICKEN LADDER	CDW/BC Guideline	Comments
Calculated Parameters						
Total Hardness (CaCO3)	mg/L	4.17	11.5	6.96	80-100	ОК
Total Metals by ICPMS						
Total Aluminum (Al)	ug/L	25	29.6	27.9	100	ОК
Total Antimony (Sb)	ug/L	<.50	<0.50	<0.50	6	ок
Total Arsenic (As)	ug/L	0.15	0.11	0.10	5	ОК
Total Barium (Ba)	ug/L	3.2	3.2	3.8	1000	ОК
Total Beryllium (Be)	ug/L	<0.10	<0.10	<0.10		
Total Bismuth (Bi)	ug/L	<1.0	<1.0	<1.0		
Total Boron (B)	ug/L	<50	<50	<50	500	ОК
Total Cadmium (Cd)	ug/L	0.013	0.013	0.112	5	ОК

Table 12 Metals, Hardness Testing July, 2014

Table 12 (Cont'd) Metals Testing – July, 2014

Maxxam ID		JZ8471	JZ8472	JZ8473		
		2014-07-03		2014-07-03		
Sampling Date		8:00	2014-07-03 8:00	8:40		
COC Number		08367831	08367831	08367831		
	UNITS	HOLLAND LAKE	STOCKING LAKE	CHICKEN LADDER	C,BC DW Guideline	Comments
Total Chromium (Cr)	ug/L	<1.0	<1.0	<1.0	50	ОК
Total Cobalt (Co)	ug/L	<0.50	<0.50	<0.50		
Total Copper (Cu)	ug/L	2.95	1.72	2.04	1000 AO	
Total Iron (Fe)	ug/L	79	53	28	300 AO	ОК
Total Lead (Pb)	ug/L	<0.20	<0.20	<0.20	1	ОК
Total Lithium (Li)	ug/L	<5.0	<5.0	<5.0		
Total Manganese (Mn)	ug/L	11.2	2.5	1.4	50 AO	ОК
Total Mercury (Hg)	ug/L	<0.050	<0.050	<0.050	1	ОК
Total Molybdenum (Mo)	ug/L	<1.0	<1.0	<1.0	73	
Total Nickel (Ni)	ug/L	<1.0	<1.0	<1.0	_	
Total Selenium (Se)	ug/L	<0.10	<0.10	<0.10	2	ОК
Total Silicon (Si)	ug/L	480	1510	1550		
Total Silver (Ag)	ug/L	<0.020	<0.020	<0.020		
Total Strontium (Sr)	ug/L	7.3	11.5	11.2	1.0	
Total Thallium (Tl)	ug/L	<0.050	<0.050	<0.050		
Total Tin (Sn)	ug/L	<5.0	<5.0	<5.0		
Total Titanium (Ti)	ug/L	<5.0	<5.0	<5.0		
Total Uranium (U)	ug/L	<0.10	<0.10	<0.10		
Total Vanadium (V)	ug/L	<5.0	<5.0	<5.0		
Total Zinc (Zn)	ug/L	5.1	<5.0	<5.0	7.5	ОК
Total Zirconium (Zr)	ug/L	<0.50	<0.50	<0.50		
Total Calcium (Ca)	mg/L	1.24	3.72	2.09		
Total Magnesium (Mg)	mg/L	0.26	0.531	0.421		
Total Potassium (K)	mg/L	0.15	0.255	0.137		
Total Sodium (Na)	mg/L	0.758	1.2	1.15	< 200 AO	ОК
Total Sulphur (S)	mg/L	<3.0	<3.0	<3.0		

Metals Testing – Dec. 12, 2014

Maxxam ID		LH5919	LH5920	LH5921		
		2014-12-12		2014-12-12		
Sampling Date		8:00	2014-12-12 8:00	8:40		
COC Number		440549-01-01	440549-01-01	440549-01-01		
				CHICKEN	C,BC DW	
	UNITS	HOLLAND LAKE	STOCKING LAKE	LADDER	Guideline	Comments
Total Chromium (Cr)	ug/L	<1.0	<1.0	<1.0	50	ОК
Total Cobalt (Co)	ug/L	<0.50	<0.50	<0.50		
Total Copper (Cu)	ug/L	1.11	0.91	0.80	1000	ОК
Total Iron (Fe)	ug/L	267	46	41	300 AO	ОК
Total Lead (Pb)	ug/L	<0.20	<0.20	<0.20	1	ОК
Total Lithium (Li)	ug/L	<5.0	<5.0	<5.0		
Total Manganese (Mn)	ug/L	26.9	2.8	<1.0	50 AO	ОК
Total Mercury (Hg)	ug/L	<0.010	<0.010	<0.010	1	ОК
Total Molybdenum						
(Mo)	ug/L	<1.0	<1.0	<1.0	1	
Total Nickel (Ni)	ug/L	<1.0	<1.6	<1.0	1	
Total Selenium (Se)	ug/L	<0.10	<0.10	<0.10	2	ОК
Total Silicon (Si)	ug/L	954	1840	3180	100	OVER
Total Silver (Ag)	ug/L	<0.020	<0.020	<0.020		
Total Strontium (Sr)	ug/L	8.3	11.1	9.9	1.0	OVER
Total Thallium (Tl)	ug/L	<0.050	<0.050	<0.050		
Total Tin (Sn)	ug/L	<5.0	<5.0	<5.0		
Total Titanium (Ti)	ug/L	<5.0	<5.0	<5.0		
Total Uranium (U)	ug/L	<0.10	<0.10	<0.10		
Total Vanadium (V)	ug/L	<5.0	<5.0	<5.0		
Total Zinc (Zn)	ug/L	115	<5.0	<5.0	7.5	Holland is over
Total Zirconium (Zr)	ug/L	<0.50	<0.50	<0.50		
Total Calcium (Ca)	mg/L	1.88	3.79	1.99		
Total Magnesium (Mg)	mg/L	0.432	0.508	0.390		
Total Potassium (K)	mg/L	0.198	0.272	0.070		
Total Sodium (Na)	mg/L	1.23	1.16	1.22	< 200 AO	ОК
Total Sulphur (S)	mg/L	<3.0	<3.0	<3.0		

6.3. Other Chemical Parameters

The Town also tests for Alkalinity, Calcium, Bromide, and Hardness. Results of these tests are as follows:

Parameter	No of Samples	Units	Ave	High	Low	CDW Guideline	Comments
Alkalinity	11	Mg/L	3.16	3.6	2.4	n/a	Slightly low
Calcium	10	Mg/L	1.23	1.55	1.04	n/a	
Bromide	12	Mg/L	0.00	<0.02	<0.01	n/a	

Table 13 Holland Lake - Other Chemical Results

Table 14 Holland Creek (Chicken Ladder) - Other Chemical Results

Parameter	No of Samples	Units	Ave	High	Low	CDW Guideline	Comments
Alkalinity	12	Mg/L	4.90	6.3	3.6	n/a	Slightly low
Calcium	11	Mg/L	6.25	50.0	1.5	n/a	
Bromide	12	Mg/L	0.00	<0.02	<0.01	n/a	

Table 15 Stocking Lake - Other Chemical Results

Parameter	No of Samples	Units	Ave	High	Low	CDW Guideline	Comments
Alkalinity	12	Mg/L	7.99	9.9	3.3	n/a	Slightly low
Calcium	11	Mg/L	3.75	4.51	3.42	n/a	
Bromide	12	Mg/L	0.00	<0.10	<0.01	n/a	

6.4. Microbiological Parameters

The Town, through Island Health, conducts weekly tests for E.Coli and Total Coliforms of our distribution system (treated water). Tests are taken weekly, and are enclosed in Appendix E. The Town is required to meet the following standards set out by Island Health for our distribution system:

Parameter	Standard
Fecal Coliform Bacteria	No detectable fecal coliform bacteria per 100 ml
Escherichia Coli	No detectable Escherichia Coli per 100 ml
Total Coliform Bacteria	At least 90% of samples have no detectable total coliform bacteria per 100 ml and no sample has more than 10 total coliform

The Town also tests our raw water sources for E-Coli and Total Coliforms. The E-Coli tests are used to determine generally eligibility for filtration deferral – in any 6 month period, no more than 10% of raw water samples can test over 20 cfu/100ml. Results for 2014 are summarized as follows:

Table 16 Source (Untreated) Water E-Coli and Total Coliform Results Holland Lake
--

Parameter	No of Samples	Units	Ave	High	Low	Samples > 20 (e- coli)	Comments
E-Coli	22	Cfu/100ml	1.67	4	<1	0.0% > 20 cfu/100ml	10% max
Total Coliforms	22	Cfu/100ml	495.29	1900	7	68% > 100 cfu/100ml	

Table 17 Source Water E-Coli and Total Coliform Results Holland Creek (Chicken Ladder)

	No of					Samples > 20 (e-	
Parameter	Samples	Units	Ave	High	Low	coli)	Comments
							10% max Over
						21.7% > 20	Regulated
E-Coli	23	Cfu/100ml	17.88	69	<1	cfu/100ml	allowable limit
						71% >100	
Total Coliforms	23	Cfu/100ml	346.17	990	16	cfu/100ml	

Parameter	No of Samples	Units	Ave	High	Low	Samples > 20 (e- coli)	Comments
E-Coli	22	Cfu/100ml	3.11	13	<1	0% > 20 cfu/100ml	10% max
						34% > 100	
Total Coliforms	22	Cfu/100ml	387.62	1600	<1	cfu/100ml	

Table 18 Source Water E-Coli and Total Coliform Results Stocking Lake

For 2014, approximately 22% of the raw E-Coli tests for Chicken Ladder exceeded the maximum allowable E-Coli value of 20 cfu/100ml. This does not meet the requirement for filtration deferral under VIHA's filtration deferral policy.

6.5. Miscellaneous Parameters

THM Formation

Trihalomethanes (THM's) and Haloacetic Acids (HAA's) are formed as products of conventional chlorination within a water system. They are commonly referred to disinfection by-products. The Canadian Drinking Water Guideline is 0.1 mg/L for THM's and 0.08 mg/L for HAA's.

A total of 8 tests were conducted within the water system in 2014 for each, as follows:

			CDW					
	558 Hooper	1280 Rocky Creek	Guideline	Comments				
Date	ТНМ	ТНМ						
Mar.05.14	0.063	0.054	0.100	Meets CDWG				
Jun.16.14	0.051	0.051	0.100	Meets CDWG				
Sept.24.14	0.059	0.054	0.100	Meets CDWG				
Dec.12.14	0.0	0.0	0.100	Meets CDWG				

Table 19 THM Formation in Water System, in mg/L

Table 20 Total HAA Formation in Water System, in mg/L

			CDW	
	558 Hooper	1280 Rocky Creek	Guideline	Comments
Mar.05.14	0.100	0.081	0.080	Marginally Fails CDWG
Jun.16.14	0.082	0.079	0.080	Marginally Fails CDWG
Oct.06.14	0.082	0.056	0.080	Marginally Fails CDWG
			0.080	Marginally Meets
Dec.12.14	0.079	0.070		CDWG

Table 21 THM Component Results, in mg/L

001100									
		MC	AA	MBAA		DC	CAA	TCA	AA
		Location		Loca	Location		ation	Locat	tion
Year	Q	Hooper	Rocky	Hooper	Rocky	Hooper	Rocky	Hooper	Rocky
2014	1	ND	ND	ND	ND	45	36	58	55
2014	2	ND	ND	ND	ND	47	42	35	37
2014	3	ND	ND	ND	ND	38	19	44	37
2014	4	ND	ND	ND	ND	22	27	58	43

Concentrations in micrograms per liter (ug/l)

								% C	an
		BC	AA	DB	AA	Total		Guideline	
		Loca	tion	Loca	tion	Loca	tion	Locat	ion
Year	Q	Hooper	Rocky	Hooper	Rocky	Hooper	Rocky	Hooper	Rocky
2014	1	ND	ND	ND	ND	100	81	125%	101%
2014	2	ND	ND	ND	ND	82	79	103%	99%
2014	3	ND	ND	ND	ND	82	56	103%	70%
2014	4	ND	ND	ND	ND	79	70	99%	88%

It should be noted that the HAA testing for 2014 were around the maximum recommended level under the current Canadian Drinking Water Quality Guideline, which is consistent with results from the previous years.

Health Canada has published an extensive review of the effects of Haloacetic Acids in drinking water, it can be accessed at:

http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/haloaceti/index-eng.php

A copy of the executive summary follows, and provides an overview of this issue:

"Haloacetic acids (HAAs) are a group of compounds that can form when the chlorine used to disinfect drinking water reacts with naturally occurring organic matter (e.g., decaying leaves and vegetation). The use of chlorine in the treatment of drinking water has virtually eliminated waterborne diseases, because chlorine can kill or inactivate most microorganisms commonly found in water. The majority of drinking water treatment plants in Canada use some form of chlorine to disinfect drinking water: to treat the water directly in the treatment plant and/or to maintain a chlorine residual in the distribution system to prevent bacterial regrowth. Disinfection is an essential component of public drinking water treatment; the health risks from disinfection by-products, including haloacetic acids, are much less than the risks from consuming water that has not been appropriately disinfected.

The haloacetic acids most commonly found in drinking water are monochloroacetic acid (MCA), dichloroacetic acid (DCA), trichloroacetic acid (TCA), monobromoacetic acid (MBA)

and dibromoacetic acid (DBA). Of these, DCA and TCA have been most extensively studied, and there are some scientific data available on MCA and DBA. However, insufficient data were available to allow the development of an individual guideline for MBA.

This Guideline Technical Document reviews the health risks associated with haloacetic acids in drinking water. It assesses all identified health risks, taking into account new studies and approaches, as well as treatment considerations. Exposure to haloacetic acids from drinking water through inhalation and skin contact has been considered for inclusion, but is not deemed significant. Based on this review, the guideline for total haloacetic acids in drinking water is established at a maximum acceptable concentration of 0.08 mg/L. This guideline takes into consideration the availability of appropriate treatment technologies and the ability of treatment plants to meet the guideline without compromising the effectiveness of disinfection."

With respect to the impact of water treatment on HAA values, the study notes that:

"The removal of organic precursors is the most effective way to reduce the concentrations of all DBPs, including HAAs, in finished water (<u>U.S. EPA, 1999c; Reid</u> <u>Crowther & Partners Ltd., 2000</u>). These precursors include synthetic organic compounds and NOM, which can react with disinfectants to form HAAs. Removing HAA precursors will also result in the formation of lower concentrations of HAAs (<u>Reid Crowther & Partners Ltd., 2000</u>). Conventional municipal-scale water treatment techniques (coagulation, sedimentation, dissolved air flotation, precipitative softening and filtration) can reduce the amount of HAA precursors, but are ineffective in removing HAAs once they are formed."

We expect that the removal of organic compounds, likely found in the greatest concentrations at Holland Creek (Chicken ladder), will effectively by dealt with through additional treatment, including filtration.

7. Watershed Management

Both Holland and Stocking Lake Watersheds are jointly used 'semi-closed' Watersheds, owned and managed by a number of parties, including:

- Town of Ladysmith;
- Ministry of Forests, Lands and Natural Resource Operations (MFNRO);
- TimberWest Forest Corporation (TimberWest);
- Cowichan Valley Regional District (CVRD).

MFNRO leases some of the lands to private third parties and First Nations principally for forestry use.

There are not any public roads within the watershed area, but are predominately private forest access roads that are jointly used by the parties.

The public is encouraged to use a recreational trail system within the watershed, and includes trails that are adjacent to both Holland and Stocking Lakes. The Town maintains a well-used trail system that includes the above noted trail routes. Signs are posted at a number of strategic locations prohibiting vehicle access to the Lakes, and recreational lake use such as boating, swimming, and fishing is prohibited.

7.1. Security

The Town jointly manages a number of gates within the Holland and Stocking Lakes Watersheds that control access into Holland and Stocking Lakes. These gates are normally left in a locked state, except when active logging activities are taking place. Town staff travel to both Lakes on a minimum weekly basis.

In recent years, the Town has observed instances where 4 wheel ATV vehicles have entered the area by by-passing the locked gates, and the Town and Timberwest has been working to prevent this activity through the use of ditching and other means to block access into the area, with some success.

The Town also posts signs at entrances to both Lakes advising that public access to the Lakes is not permitted. The Town continues to see evidence of occasional camping and recreational activity around the Lakes, particularly Holland Lake which is more remote than Stocking Lake.

The Town has been working with the various stakeholders of the southern access area (South Watts Road) to improve the gate at that location, possibly through the use of access cards and video security, as this gate is located nearer a source of power. Funds have been allocated in the capital budget for this purpose.

8. Routine Maintenance Program

The Town has a regular maintenance program that is described briefly as follows:

8.1. Distribution

- Water mains are flushed using a unidirectional flushing program
- Air relief valves are cleaned
- Fireline meters are cleaned
- > Fire Hydrants are completely disassembled and inspected on a 2 year rotation
- Paint and brush out around hydrants as needed
- > All irrigation backflow prevention devices tested and repaired if needed

8.2. Source Intakes

- Winter maintenance of chlorination system while off line
- Weekly blowing of air lines through intake screens
- > Daily checks of pump flows and chlorine levels
- Monthly calibration of turbidity analyzers

8.3. Reservoirs

- > Daily security check of tanks and compounds
- > Yearly cleaning
- Clean Reservoir using divers every 5 years.

8.4. Pump Stations

- > Daily checks of pumps and chlorination system
- Security checks of compounds
- > Bi-Annual calibration of chlorine analyzers and turbidimeters

The Town trains it's staff in accordance with current industry practises and requirements, and staff are certified to work on our system as required in the Town's Operating Permit.

9. Capital Planning

A summary of the major capital projects projected over the next 10 years is as follows:

		•	Start	
Title	Description	Purpose	Year	Cost
		To upgrade the present		
Chlorination Facility	Construction of a new Chlorination Facility	chlorination facility.	2013	\$1,500,000
Stocking Lake Supply				
Main Replacement -	Replacement of the existing AC watermain	To provide a more secure Supply		
Phase I	from Stocking Lake to the balancing reservoir.	main.	2015	\$800,000
		To replace aging AC and Cast Iron		
Watermain Replacement	Annual Capital Watermain Replacement	mains throughout the		
Program	Program in the Town's Distribution System.	distribution system.	annual	\$300,000
		To provide a direct system		
Holland to Stocking	New Supply main to connect Stocking Supply	connection from Holland Lake to		
Supply Main	Main with Holland Lake.	the Town's water system.	2018	\$5,4000,000
Stocking Lake Supply	Replacement of the AC Supply watermain			
Main Replacement -	from balancing reservoir to the Old	To provide a more secure Supply		
Phase II	Chlorination Station.	Main.	2022	\$2,000,000
	Design and Construction for new Water	To provide Filtration as per VIHA		
Water Filtration Project	Filtration Plant near Arbutus Reservoir.	4-3-2-1 Water Supply Rule.	2018	\$6,265,000
Holland Dam Capacity		To provide for future water	2019-	
Increase	Doubling of current storage at Holland Dam	supply needs	2012	\$6,000,000
Replace Holland Supply				
Main: Public Works Yard	Replacement of old AC supply main along the	To provide a more secure Supply		
to Colonia	Holland Creek Trail	main.	2018	\$400,000
Arbutus Reservoir -				
Capacity Increase	Doubling of Arbutus Reservoir	For future development	2023	\$2,720,000
New Upper Pressure				
Zone Reservoir	To service Couverdon, possibly others.	For development in upper zone	2021	\$2,000,000
Upper Pressure Zone -			-	. ,,
Pump Station		For development in upper zone	2021	\$900,000
		10 year Plan - Cost of "Major' Pro	jects Only	\$30,000,000

Table 22 – Long Term Capital Plan

Appendix A – Canadian Drinking Water Quality Guidelines

	Guidelin		Drinking Water Quality (Au robiological Parameters	5 2012)
Parameter (approval)	Guideline	Common sources	Health considerations	Applying the guideline
Bacterial waterborne pathogens (2006)	None required	Human and animal faeces; some are naturally occurring	Commonly associated with gastrointestinal upset (nausea, vomiting, diarrhoea); some pathogens may infect the lungs, skin, eyes, central nervous system or liver.	Use multi-barrier approach to reduce pathogens to levels that are non-detectable or not associated with illness.
Enteric viruses (2011)	Treatment goal: Minimum 4 log reduction and/or inactivation of enteric viruses	Human and animal faeces	Commonly associated with gastrointestinal upset (nausea, vomiting, diarrhoea); less common health effects can include respiratory symptoms, central nervous system infections, liver infections and muscular syndromes.	Routine monitoring for viruses is not practical; where possible, characterize source water to determine if greater than a 4 log removal or inactivation is necessary.
Escherichia coli(E. coli) (2006)	MAC: None detectable per 100 mL	Human and animal faeces	The presence of <i>E.</i> <i>coli</i> indicates recent faecal contamination and the potential presence of microorganisms capable of causing gastrointestinal illnesses; pathogens in human and animal faeces pose the most immediate danger to public health.	<i>E. coli</i> is used as an indicator of the microbiological safety of drinking water; if detected, enteric pathogens may also be present.
Heterotrophic plate count (HPC) (2006)	None required	Naturally occurring	HPC results are not an indicator of water safety and should not be used as an indicator of potential adverse human health effects; HPC is a useful operational tool for monitoring general bacteriological water quality through the treatment process and in the distribution system.	If increases in HPC values above baseline levels occur, the system should be inspected to determine the cause; HPC should be minimized through effective treatment and disinfection and remain constant over time.
Protozoa:Giardia andCrypt osporidium(2004)	Treatment goal: Minimum 3 log reduction and/or inactivation	Human and animal faeces	Commonly associated with gastrointestinal upset (nausea, vomiting, diarrhoea); less common health effects can include respiratory symptoms, central nervous system infections, liver infections and muscular syndromes.	Monitoring for <i>Cryptosporidium</i> and <i>Giardia</i> in source waters will provide valuable information for assessing treatment requirements.

	Guidelines for Canadian Drinking Water Quality (Aug 2012) Table 1 – Microbiological Parameters								
Parameter (approval)	Guideline	Table 1 – Micr Common sources	Obiological Parameters Health considerations	Applying the guideline					
Total coliforms (2006)	municipal treatment plant or throughout semi-public of none detectable/100 mLanimal faect naturally occurring in water, soil a vegetation		Total coliforms are not used as indicators of potential health effects from pathogenic microorganisms; they are used as an operational tool to determine how well the drinking water treatment system is operating.	In water leaving a treatment plant, the presence of total coliforms indicates that the water has been inadequately treated and may contain pathogenic microorganisms; in semi-public systems, the presence of total coliforms generally indicates that the system is vulnerable to contamination and that additional actions need to be taken; in a distribution and storage system, detection of total coliforms can indicate regrowth of the bacteria					
	In municipal distribution systems: No consecutive samples or no more than 10% of samples should contain total coliforms			in distribution system biofilms or intrusion of untreated water; thus, exceedances of the distribution system goal should be investigated.					
Turbidity (2003)	GuidelineNaturally occurring particles:Treatedoccurring particles:water < 0.1		Indirect associations: particles can harbour microorganisms, protecting them from disinfection, and can entrap heavy metals 	Guidelines apply to individual filter turbidity for systems that use surface water or GUDI; drinking water from some sources may meet exemption criteria from filtration requirements established by the appropriate authority; increases in distribution system turbidity can be indicative of deteriorating water quality and should be					
	≤ 0.3 <u>NTUTable 1</u> <u>footnote2</u> ≤ 1.0 <u>NTUTable 1</u> <u>footnote3</u>	<i>Inorganic</i> : clays, silts, metal precipitates <i>Organic</i> : decomposed plant & animal debris, microorganisms	pathogens in treated water.	investigated.					
	<u>≤ 0.1</u> NTUTable 1 footnote4								

Guidelines for Canadian Drinking Water Quality (Aug 2012)

	_			emical and Physical				
Туре	Parameter approval, OR reaffirmation	MAC (mg/lL	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments		
т	Aluminum (1998)		OG:	Aluminum salts used as coagulants in drinking water		Current weight of evidence does not indicate adverse health		
			< 0.1 (conventional treatment);	treatment; naturally occurring		effects at levels found in drinking water.		
			< 0.2 (other treatment types)					
I	Ammonia (1987)	None required		Naturally occurring; released from agricultural or industrial wastes; added as part of chloramination for drinking water disinfection		Guideline value not necessary as it is produced in the body and efficiently metabolized in healthy people; no adverse effects at levels found in drinking water.		
I	Antimony (1997)	0.006		Naturally occurring (erosion); soil runoff; industrial effluents; leaching from plumbing materials and solder	Health basis of MAC:Microscopic changes in organs and tissues (thymus, kidney, liver, spleen, thyroid)	MAC takes into consideration analytical achievability; plumbing should be thoroughly flushed before water is used for consumption.		
I	Arsenic (2006)	0.01		Naturally occurring (erosion and weathering of soils, minerals, ores)	Health basis of MAC:Cancer (lung, bladder, liver, skin) (classified as human carcinogen)	MAC based on treatment achievability; elevated levels associated with certain groundwaters; levels should be kept as low as reasonably achievable.		
		ALARA			Other: Skin, vascular and neurological effects (numbness and tingling of extremities)			
I	Asbestos (1989, 2005)	None required		Naturally occurring (erosion of asbestos minerals and ores); decay of asbestos- cement pipes		Guideline value not necessary; no evidence of adverse health effects from exposure through drinking water.		
Ρ	Atrazine (1993)	0.005		Leaching and/or runoff from agricultural use	Health basis of MAC:Developmental effects (reduced body weight of offspring)	MAC applicable to the sum of atrazine and its <i>N</i> -dealkylated metabolites; persistent in source waters.		
					Other: Potential increased risk of ovarian cancer or lymphomas (classified as possible carcinogen)			

Table 2 - Chemical and Physical Properties

Guidelines for Canadian Drinking Water Quality (Aug 2012)

Table 2 - Chemical and Physical Properties						
Туре	Parameter approval, OR reaffirmation	MAC (mg/lL	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments
Ρ	Azinphos-methyl (1989, 2005)	0.02		Leaching and/or runoff from agricultural use	Health basis of MAC:Neurological effects (plasma cholinesterase)	All uses to be phased out by 2012.
I	Barium (1990)	1		Naturally occurring; releases or spills from industrial uses	Health basis of MAC:Increases in blood pressure, cardiovascular disease	
0	Benzene (2009)	0.005		Releases or spills from industrial uses	Health basis of MAC: Bone marrow (red and white blood cell) changes and cancer (classified as human carcinogen)	MAC considers additional exposure through showering and bathing; drinking water is generally a minor source of exposure.
					Other: Blood system and immunological responses	
0	Benzo[a]pyrene (1988, 2005)	0.000 01		Leaching from liners in water distribution systems	Health basis of MAC:Stomach tumours (classified as probable carcinogen)	
I	Boron (1990)	5		Naturally occurring; leaching or runoff from industrial use	Health basis of MAC:Reproductive effects (testicular atrophy, spermatogenesis) Other: Limited evidence of reduced sexual function in	MAC based on treatment achievability.
DBP	Bromate (1998)	0.01		By-product of drinking water disinfection with ozone; possible contaminant in hypochlorite solution	men Health basis of MAC: Renal cell tumours (classified as probable carcinogen)	MAC based on analytical and treatment achievability
Р	Bromoxynil (1989, 2005)	0.005		Leaching or runoff from agricultural use	Health basis of MAC:Reduced liver to body weight ratios	
I	Cadmium (1986, 2005)	0.005		Leaching from galvanized pipes, solders or black polyethylene pipes; industrial and municipal waste	Health basis of MAC:Kidney damage and softening of bone	
I	Calcium (1987, 2005)	None required		Naturally occurring (erosion and weathering of soils, minerals, ores)		Guideline value not necessary, as there is no evidence of adverse health effects from calcium in drinking water; calcium contributes to hardness

Table 2 - Chemical and Physical Properties

	Table 2 - Chemical and Physical Properties							
Туре	Parameter approval, OR reaffirmation	MAC (mg/lL	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments		
Р	Carbaryl (1991, 2005)	0.09		Leaching or runoff from agricultural use	Health basis of MAC:Decreased kidney function (may be rapidly reversible after exposure ceases)			
Р	Carbofuran (1991, 2005)	0.09		Leaching or runoff from agricultural use	Health basis of MAC:Nervous system effects (cholinesterase inhibition) and growth suppression			
0	Carbon tetrachloride (2010)	0.002		Industrial effluents and leaching from	Health basis of MAC: Liver toxicity	MAC considers additional exposure		
				hazardous waste sites	Other: Kidney damage; liver tumours (classified as probable carcinogen)	through showering and bathing		
D	Chloramines (1995)	3		Monochloramine is used as a secondary disinfectant; formed in presence of both chlorine and ammonia	Health basis of MAC:Reduced body weight gain	MAC is for total chloramines based on health effects associated with monochloramine and analytical achievability		
					Other: immunotoxicity effects			
DBP	Chlorate (2008)	1		By-product of drinking water disinfection with chlorine dioxide; possible contaminant in hypochlorite solution	Health basis of MAC:Thyroid gland effects (colloid depletion)	Formation of chlorate ion should be prevented, as it is difficult to remove once formed; chlorate formation should be controlled by respecting the maximum feed dose of 1.2 mg/L of chlorine dioxide and managing /monitoring formation in hypochlorite solutions.		
I	Chloride (1979, 2005)		AO: ≤ 250	Naturally occurring (seawater intrusion); dissolved salt deposits, highway salt, industrial effluents, oil well operations, sewage, irrigation drainage, refuse leachates		Based on taste and potential for corrosion in the distribution system		

	Table 2 - Chemical and Physical Properties								
Туре	Parameter approval, OR reaffirmation	MAC (mg/lL	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments			
D	Chlorine (2009)	None required		Used as drinking water disinfectant	Guideline value not necessary due to low toxicity at concentrations found in drinking water	Free chlorine concentrations in most Canadian drinking water distribution systems range from 0.04 to 2.0 mg/L			
D	Chlorine dioxide (2008)	None required		Used as drinking water disinfectant	A guideline for chlorine dioxide is not required because of its rapid reduction to chlorite in drinking water	A maximum feed dose of 1.2 mg/L of chlorine dioxide should not be exceeded to control the formation of chlorite and chlorate			
DBP	Chlorite (2008)	1		By-product of drinking water disinfection with chlorine dioxide	Health basis of MAC:Neurobehavioural effects (lowered auditory startle amplitude, decreased exploratory activity), decreased absolute brain weight, altered liver weights	Chlorite formation should be controlled by respecting the maximum feed dose of 1.2 mg/L of chlorine dioxide and managing /monitoring formation in hypochlorite solutions.			
Р	Chlorpyrifos (1986)	0.09		Leaching and/or runoff from agricultural or other uses	Health basis of MAC:Nervous system effects (cholinesterase inhibition)	Not expected to leach significantly into groundwater			
I	Chromium (1986)	0.05		Naturally occurring (erosion of minerals); releases or spills from industrial uses	Health basis of MAC:Enlarged liver, irritation of the skin, respiratory and gastrointestinal tracts from chromium (VI)	Chromium (III) is an essential element; MAC is protective of health effects from chromium (VI)			
т	Colour (1979, 2005)		AO: ≤ 15 TCU	Naturally occurring organic substances, metals; industrial wastes		May interfere with disinfection; removal is important to ensure effective treatment			
I	Copper (1992)		AO: ≤ 1.0	Naturally occurring; leaching from copper piping	Copper is an essential element in human metabolism. Adverse health effects occur at levels much higher than the aesthetic objective	Based on taste, staining of laundry and plumbing fixtures; plumbing should be thoroughly flushed before water is used for consumption			
I	Cyanide (1991)	0.2		Industrial and mining effluents; release from organic compounds	Health basis of MAC: No clinical or other changes at the highest dose tested	Health effects from cyanide are acute; at low levels of exposure, it can be detoxified to a certain extent in the human body			

	Table 2 - Chemical and Physical Properties							
Туре	Parameter approval, OR reaffirmation	MAC (mg/lL	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments		
0	Cyanobacterial toxinsMicrocystin- LR (2002)	0.0015		Naturally occurring (released from blooms of blue- green algae)	Health basis of MAC: Liver effects (enzyme inhibitor)	MAC is protective of total microcystins; avoid algicides like copper sulphate, as they may cause toxin release into water		
					Other: Classified as possible carcinogen			
Ρ	Diazinon (1986, 2005)	0.02		Runoff from agricultural or other uses	Health basis of MAC:Nervous system effects (cholinesterase inhibition)	Not expected to leach significantly into groundwater		
Р	Dicamba (1987, 2005)	0.12		Leaching or runoff from agricultural or other uses	Health basis of MAC: Liver effects	Readily leaches into groundwater		
					(vacuolization, necrosis, fatty deposits and liver weight changes)			
0	<u>1,2-</u> <u>DichlorobenzeneTable 2</u> <u>footnote2(1987)</u>	0.2	AO: ≤ 0.003	Releases or spills from industrial effluents	Health basis of MAC:Increased blood cholesterol, protein and glucose levels	AO based on odour; levels above the AO would render drinking water unpalatable		
0	<u>1,4-</u> DichlorobenzeneTable 2 footnote2(1987)	0.005	AO: ≤ 0.001	Releases or spills from industrial effluents; use of urinal deodorants	Health basis of MAC:Benign liver tumours and adrenal gland tumours (classified as probable carcinogen)	AO based on odour; levels above the AO would render drinking water unpalatable		
0	1,2-Dichloroethane (1987)	0.005		Releases or spills from industrial effluents; waste disposal	Health basis of MAC:Cancer of the circulatory system (classified as probable carcinogen)	MAC based on treatment and analytical achievability		
0	1,1- Dichloroethylene (1994)	0.014		Releases or spills from industrial effluents	Health basis of MAC: Liver effects (fatty changes)			
0	Dichloromethane (2011)	0.05		Industrial and municipal wastewater discharges	Health basis of MAC: Liver effects (liver foci and areas of cellular alteration).	MAC is protective of carcinogenic effects and considers additional exposure through showering and bathing		
					Other: Classified as probable carcinogen			
0	2,4-Dichlorophenol (1987, 2005)	0.9	AO: ≤ 0.0003	By-product of drinking water disinfection with chlorine; releases from industrial	Health basis of MAC: Liver effects (cellular changes)	AO based on odour; levels above the AO would render drinking water unpalatable		

			Table 2 - Che	emical and Physical I	Properties	
Туре	Parameter approval, OR reaffirmation	MAC (mg/lL	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments
				effluents		
P	2,4- Dichlorophenoxy acetic acid (2,4-D) (1991)	0.1		Leaching and/or runoff from use as a weed controller; releases from industrial effluents	Health basis of MAC:Kidney effects (tubular cell pigmentation)	
Ρ	Diclofop-methyl (1987, 2005)	0.009		Leaching and/or runoff from use as a weed controller; added directly to water to control aquatic weeds	Health basis of MAC: Liver effects (enlargement and enzyme changes)	Low potential for groundwater contamination
Ρ	Dimethoate (1986, 2005)	0.02		Leaching and/or runoff from residential, agricultural and forestry use	Health basis of MAC:Nervous system effects (cholinesterase inhibition)	
Ρ	Diquat (1986, 2005)	0.07		Leaching and/or runoff from agricultural use; added directly to water to control aquatic weeds	Health basis of MAC:Cataract formation	Unlikely to leach into groundwater
Р	Diuron (1987, 2005)	0.15		Leaching and/or runoff from use in controlling vegetation	Health basis of MAC:Weight loss, increased liver weight and blood effects	High potential to leach into groundwater
0	Ethylbenzene (1986, 2005)		AO: ≤ 0.0024	Emissions, effluents or spills from petroleum and chemical industries		Based on odour
I	Fluoride (2010)	1.5		Naturally occurring (rock and soil erosion); may be added to promote dental health	Health basis of MAC:Moderate dental fluorosis (based on cosmetic effect, not health)	Beneficial in preventing dental caries
DBP	Formaldehyde (1997)	None required		By-product of disinfection with ozone; releases from industrial effluents		Guideline value not necessary, as levels in drinking water are below the level at which adverse health effects may occur

	Table 2 - Chemical and Physical Properties							
Туре	Parameter approval, OR reaffirmation	MAC (mg/lL	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments		
0	Gasoline and its organic constituents (1986, 2005)	None required		Spill or leaking storage tank		No MAC due to complex composition of gasoline; strong taste and odour at concentrations well below those potentially eliciting adverse health effects (see benzene, ethylbenzene, toluene and xylenes for more information)		
Р	Glyphosate (1987, 2005)	0.28		Leaching and/or runoff from various uses in weed control	Health basis of MAC:Reduced body weight gain	Not expected to migrate to groundwater		
DBP	<u>Haloacetic acids - Total</u> (<u>HAAs</u>)Table 2 <u>footnote3(2008)</u>	0.08 ALARA		By-product of drinking water disinfection with chlorine	Health basis of MAC: Liver cancer (DCA); DCA is classified as probably carcinogenic to humans Other: Other organ cancers (DCA, DBA, TCA); liver and other organ effects (body, kidney and testes weights) (MCA)	Refers to the total of monochloroacetic acid (MCA), dichloroacetic acid (DCA), trichloroacetic acid (TCA), monobromoacetic acid (MBA) and dibromoacetic acid (DBA); MAC is based on ability to achieve HAA levels in distribution systems without compromising disinfection; precursor removal limits formation		
Т	Hardness (1979)	None required		Naturally occurring (sedimentary rock erosion and seepage, runoff from soils); levels generally higher in groundwater	Although hardness may have significant aesthetic effects, a guideline has not been established because public acceptance of hardness may vary considerably according to the local conditions; major contributors to hardness calcium and magnesium are not of direct public health concern	Hardness levels between 80 and 100 mg/L (as CaCO ₃) provide acceptable balance between corrosion and incrustation; where a water softener is used, a separate unsoftened supply for cooking and drinking purposes is recommended		

	Table 2 - Chemical and Physical Properties							
Туре	Parameter approval, OR reaffirmation	MAC (mg/lL	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments		
I	Iron (1978, 2005)		AO: ≤ 0.3	Naturally occurring (erosion and weathering of rocks and minerals); acidic mine water drainage, landfill leachates, sewage effluents and iron- related industries		Based on taste and staining of laundry and plumbing fixtures; no evidence exists of dietary iron toxicity in the general population		
I	Lead (1992)	0.01		Leaching from plumbing (pipes, solder, brass fittings and lead service lines)	Health basis of MAC:Biochemical and neurobehavioural effects (intellectual development, behaviour) in infants and young children (under 6 years) Other: Anaemia, central nervous system effects; in pregnant women, can affect the unborn child; in infants and children under 6 years, can affect intellectual development, behaviour, size and hearing; classified as probably carcinogenic to humans	Because the MAC is based on chronic effects, it is intended to apply to average concentrations in water consumed for extended periods. Exposure to lead should nevertheless be kept to a minimum; plumbing should be thoroughly flushed before water is used for consumption; most significant contribution is generally from lead service line entering the building		
I	Magnesium (1978)	None required		Naturally occurring (erosion and weathering of rocks and minerals)		Guideline value not necessary, as there is no evidence of adverse health effects from magnesium in drinking water		
Р	Malathion (1986, 2005)	0.19		Leaching and/or runoff from agricultural and other uses	Health basis of MAC:Nervous system effects (cholinesterase inhibition)	Not expected to leach into groundwater		
I	Manganese (1987)		AO: ≤ 0.05	Naturally occurring (erosion and weathering of rocks and minerals)		Based on taste and staining of laundry and plumbing fixtures		
I	Mercury (1986)	0.001		Releases or spills from industrial effluents; waste disposal; irrigation or drainage of areas where agricultural pesticides are used	Health basis of MAC:Irreversible neurological symptoms	Applies to all forms of mercury; mercury generally not found in drinking water, as it binds to sediments and soil		

	Table 2 - Chemical and Physical Properties								
Туре	Parameter approval, OR reaffirmation	MAC (mg/lL	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments			
Ρ	2-Methyl-4- chlorophenoxyacetic acid (MCPA) (2010)	0.1		Leaching and/or runoff from agricultural and other uses	Health basis of MAC:Kidney effects (increased absolute and relative weights, urinary bilirubin, crystals and pH) Other: Systemic, liver, testicular, reproductive/developmental and nervous system effects	Can potentially leach into groundwater			
0	Methyl tertiary- butyl ether (MTBE) (2006)		AO: ≤ 0.015	Spills from gasoline refineries, filling stations and gasoline-powered boats; seepage into groundwater from leaking storage tanks	There exist too many uncertainties and limitations in the MTBE database to develop a health based guideline.	AO based on odour; levels above the AO would render water unpalatable; as the AO is lower than levels associated with potential toxicological effects, it is considered protective of human health.			
Ρ	Metolachlor (1986)	0.05		Leaching and/or runoff from agricultural or other uses	Health basis of MAC: Liver lesions and nasal cavity tumours	Readily binds to organic matter in soil; little leaching expected in soils with high organic and clay content			
Ρ	Metribuzin (1986, 2005)	0.08		Leaching and/or runoff from agricultural use	Health basis of MAC: Liver effects (increased incidence and severity of mucopolysaccharide droplets)	Leaching into groundwater depends on the organic matter content of the soil			
0	Monochlorobenzene (1987)	0.08	AO: ≤ 0.03	Releases or spills from industrial effluents	Health basis of MAC:Reduced survival and body weight gain	AO based on odour; levels above the AO would render water unpalatable			
I	Nitrate/nitrite (1987)	Nitrate: 45 as nitrate; 10 as nitrate- nitrogen	Nitrite (if measured separately): 3.2 as nitrite; 1.0 as nitrite- nitrogen	Naturally occurring; leaching or runoff from agricultural fertilizer use, manure and domestic sewage; may be produced from excess ammonia or from microbial activity	Health basis of MAC:Methaemoglobinaemia (blue baby syndrome) in infants less than 3 months old (short term) Other: Classified as	MACs are protective of children and adults; systems using chloramine disinfection or that have naturally occurring ammonia should monitor nitrite and nitrate in distribution system			
				in distribution systems	possible carcinogen				
I	Nitrilotriacetic acid (NTA) (1990)	0.4		Sewage contamination	Health basis of MAC:Kidney effects (nephritis and nephrosis)				

1	Table 2 - Chemical and Physical Properties								
Туре	Parameter approval, OR reaffirmation	MAC (mg/lL	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments			
					Other: Classified as possible carcinogen				
DBP	<i>N</i> -Nitroso dimethylamine (NDMA) (2010)	0.000 04		By-product of drinking water disinfection with chlorine or chloramines; industrial and sewage treatment plant effluents	Health basis of MAC: Liver cancer (classified as probable carcinogen)	MAC considers additional exposure through showering and bathing; levels should be kept low by preventing formation during treatment			
A	Odour (1979, 2005)		Inoffensive	Biological or industrial sources		Important to provide drinking water with no offensive odour, as consumers may seek alternative sources that are less safe			
Ρ	Paraquat (1986, 2005)	0.01 as paraquat dichloride; 0.007 as paraquat ion		Leaching and/or runoff from agricultural and other uses; added directly to water to control aquatic weeds	Health basis of MAC:Various effects on body weight, spleen, testes, liver, lungs, kidney, thyroid, heart and adrenal gland	Entry into drinking water unlikely from crop applications (clay binding); however, may persist in water for several days if directly applied to water			
0	Pentachlorophenol (1987, 2005)	0.06	AO: ≤ 0.03	By-product of drinking water disinfection with chlorine; industrial effluents	Health basis of MAC:Reduced body weight, changes in clinical parameters, histological changes in kidney and liver, reproductive effects (decreased neonatal survival and growth)	AO based on odour; levels above the AO would render drinking water unpalatable			
т	pH (1979)		<u>6.5-8.5Table 2</u> <u>footnote4</u>	Not applicable		pH can influence the formation of disinfection by- products and effectiveness of treatment			
Ρ	Phorate (1986, 2005)	0.002		Leaching and/or runoff from agricultural and other uses	Health basis of MAC:Nervous system effects (cholinesterase inhibition)	Some potential to leach into groundwater			
Ρ	Picloram (1988, 2005)	0.19		Leaching and/or runoff from agricultural and other uses	Health basis of MAC:Changes in body and liver weights and clinical chemistry parameters Other: Kidney effects (liver to body weight ratios and histopathology)	Significant potential to leach into groundwater			

	Table 2 - Chemical and Physical Properties								
Туре	Parameter approval, OR reaffirmation	MAC (mg/lL	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments			
I	Selenium (1992)	0.01		Naturally occurring (erosion and weathering of rocks and soils)	Health basis of MAC:Essential nutritional element	Most exposure from food; little information on toxicity of selenium from drinking water			
					Other: Hair loss and weakened nails at extremely high levels of exposure				
I	Silver (1986, 2005)	None required		Naturally occurring (erosion and weathering of rocks and soils)		Guideline value not required as drinking water contributes negligibly to an individual's daily intake			
Р	Simazine (1986)	0.01		Leaching and/or runoff from agricultural and other uses	Health basis of MAC: Body weight changes and effects on serum and thyroid gland	Extent of leaching decreases with increasing organic matter and clay content			
I	Sodium (1979)		AO: ≤ 200	Naturally occurring (erosion and weathering of salt deposits and contact with igneous rock, seawater intrusion); sewage and industrial effluents; sodium- based water softeners		Based on taste; where a sodium-based water softener is used, a separate unsoftened supply for cooking and drinking purposes is recommended			
I	Sulphate (1994)		AO: ≤ 500	Industrial wastes	High levels (above 500 mg/L) can cause physiological effects such as diarrhoea or dehydration	Based on taste; health authorities should be notified of drinking water sources containing above 500 mg/L			
I	Sulphide (1992)		AO: ≤ 0.05	Can occur in the distribution system from the reduction of sulphates by sulphate-reducing bacteria; industrial wastes		Based on taste and odour; levels above the AO would render water unpalatable			
A	Taste (1979, 2005)		Inoffensive	Biological or industrial sources		Important to provide drinking water with no offensive taste, as consumers may seek alternative sources that are less safe			

	Table 2 - Chemical and Physical Properties								
Туре	Parameter approval, OR reaffirmation	MAC (mg/lL	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments			
т	Temperature (1979, 2005)		AO: ≤ 15°C	Not applicable		Temperature indirectly affects health and aesthetics through impacts on disinfection, corrosion control and formation of biofilms in the distribution system			
Ρ	Terbufos (1987, 2005)	0.001		Leaching and/or runoff from agricultural and other uses	Health basis of MAC:Nervous system effects (cholinesterase inhibition)	Based on analytical achievability			
0	Tetrachloroethylene (1995)	0.03		Industrial effluents or spills	Health basis of MAC:Increased liver and kidney weights Other: Classified as possible carcinogen; limited evidence of an increased risk of spontaneous abortion	Readily leaches into groundwater; MAC considers additional exposure through showering and bathing			
0	2,3,4,6- Tetrachlorophenol (1986, 2005)	0.1	AO: ≤ 0.001	By-product of drinking water disinfection with chlorine; industrial effluents and use of pesticides	Health basis of MAC:Developmental effects (embryotoxicity)	AO based on odour; levels above the AO would render drinking water unpalatable			
0	Toluene (1986, 2005)		AO: ≤ 0.024	Release of effluents or spills from petroleum and chemical industries		AO based on odour; levels above the AO would render drinking water unpalatable			
A	Total dissolved solids (TDS) (1991)		AO: ≤ 500	Naturally occurring; sewage, urban and agricultural runoff, industrial wastewater		Based on taste; TDS above 500 mg/L results in excessive scaling in water pipes, water heaters, boilers and appliances; TDS is composed of calcium, magnesium, sodium, potassium, carbonate, bicarbonate, chloride, sulphate and nitrate			
0	Trichloroethylene (2005)	0.005		Industrial effluents and spills from improper disposal	Health basis of MAC:Developmental effects (heart malformations) Other: Classified as probable carcinogen	MAC considers additional exposure through showering and bathing			
0	2,4,6- Trichlorophenol (1987, 2005)	0.005	AO: ≤ 0.002	By-product of drinking water disinfection with chlorine; industrial	Health basis of MAC: Liver cancer (classified as probable carcinogen)	AO based on odour; levels above the AO would render drinking water unpalatable			

	Table 2 - Chemical and Physical Properties							
Туре	Parameter approval, OR reaffirmation	MAC (mg/lL	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments		
				effluents and spills				
Р	Trifluralin (1989, 2005)	0.045		Runoff from agricultural uses	Health basis of MAC:Changes in liver and spleen weights and in serum chemistry	Unlikely to leach into groundwater		
DBP	TrihalomethanesTable 2 footnote3(THMs) (2006)	0.1		By-product of drinking water disinfection with chlorine; industrial effluents	Health basis of MAC: Liver effects (fatty cysts) (chloroform classified as possible carcinogen)	Considers the most commonly found THMs, namely chlorodibromomethane, chloroform, bromodichloromethane and bromoform; MAC based on health effects of chloroform and considers additional exposure through showering and bathing; precursor removal limits formation		
					Other: Kidney and colorectal cancers			
I	Uranium (1999)	0.02		Naturally occurring (erosion and weathering of rocks and soils); mill tailings; emissions from nuclear industry and combustion of coal and other fuels; phosphate fertilizers	Health basis of MAC:Kidney effects (various lesions); may be rapidly reversible after exposure ceases	Based on treatment achievability; MAC based on chemical effects, as uranium is only weakly radioactive; uranium is rapidly eliminated from the body		
0	Vinyl chloride (1992)	0.002		Industrial effluents; degradation product from trichloroethylene and tetrachloroethylene in groundwater; leaching from polyvinyl chloride pipes	Health basis of MAC: Liver cancer (classified as human carcinogen) Other: Raynaud's disease, effects on bone, circulatory system, thyroid, spleen, central nervous system	Based on treatment and analytical achievability; leaching from polyvinyl chloride pipe is not expected to be significant		
0	Xylene (1986, 2005)		AO: ≤ 0.3	Industrial effluents and spills		AO based on taste and odour; levels above the AO would render water unpalatable		

	Table 2 - Chemical and Physical Properties								
Туре	Parameter approval, OR reaffirmation	MAC (mg/lL	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments			
I	Zinc (1979, 2005)		AO: ≤ 5.0	Naturally occurring; industrial and domestic emissions; leaching may occur from galvanized pipes, hot water tanks and brass fittings		AO based on taste; water with zinc levels above the AO tends to be opalescent and develops a greasy film when boiled; plumbing should be thoroughly flushed before water is consumed			

Appendix B – Water Quality Test Results – 2014

Holland Lake

	Coliforms									Colour						
Date	total	fecal	non-coli	E-coli	Alkalinity	Calcium	Bromide	TDS	PH	TCU	ACU	Turbidity	DOC	TOC	UVT	THM
Jan.9/14	430	0	0	<1	, ,			<10		10	12	0.7	2.6	3		
Jan15/14										10	13	1.2				250
Jan23/14	8			<1						7	12	0.8				290
Jan30/14					3	1.12	< 0.010		6.5	10	13	0.8				
Feb5/14	9			<1				17		11	17	0.6	2.89	3.64	82.2	
Feb.20/14	7			<1						14	20	0.7			82.2	
Mar.19/14	20			<1						10	13	0.9			81.6	
mar 27/14					2.4	1.12	<.01		6.4	12	14	0.5				
Apr 3/14	110			<1				21		12	14	0.4	2.62	2.46	82.2	
Apr.10/14										12	14	0.5				290
Apr.17/14	58			<1						11	14	0.9			82.8	
Apr.24/14					3	1.04	< 0.02		6.5	<5	5	0.9				
May.8/14										11	14	0.9				
May.15/14	1200			<1						10	17	0.8			82.3	
May.22/14					3.4	1.31	< 0.02		6.5	10	13	1				
May.29/14	1300			<1				15		8	13	1	2.7	3.4	81.2	
Jun.5/14										5	10	0.7				
Jun.12/14	1200			<1						11	13	0.7			83.4	
Jun.19/14					3.3	1.12	<.02		6.5	11	13	0.8				
Jun.26/14	130			<1				22		10	13	0.6	1.87	6.08	86.1	
Jul.3/14										11	13	0.6				
Jul.10/14	480			<1						5	10	0.6			86.6	180
Jul.17/14					3.3		< 0.02		6.4	10	12	0.5				
Jul.24/14	570			1				21		8	10	0.4	2.05	2.39	87.2	
Jul.31/14										5	10	0.4				
Aug.7/14	1900			<1						5	10	0.5				85.2
Aug 14/14					3.3	1.24	< 0.02		6.2	5	10	0.6				
Aug 21/14				<1	0.0		10102	14	0.2	11	14	0.8	2.64	2.82	86.5	
Aug 28/14										7	12	0.9				
Sept 4/14	1000			<1						8	12	1.2			85.6	
Sept 11/14					3.5	1.23	< 0.02		6.5	9	12	0.5				
Sept 18/14	290			1				25		9	13	0.6	3.25	3.34	86.7	
Sept 25/14								-		10	13	0.6				240
Oct 2/14	840			1						10	12	0.8			87.2	
Oct 9/14					3.6	1.2	<.02		6.5	8	12	0.5				
Oct 16/14	84			<1	-		-	20		9	14	0.8	2.36	4.37	86.4	
Oct 23/14								-		9	14	1.2				
Oct 29/14	460			4						15	20	1.3		2.98	78.5	
Nov 6/14					3.1	1.34	< 0.02		6.4	5	5	1.4				
Nov 13/14	220			2	-	-		15		15	20	1.3	4.08	5.52	78.7	
Nov 20/14								-		15	15	1.1				
Nov 27/14	85			1						15	20	1.4			76.6	
Dec 4/14										15	15	1.2				360
Dec 11/14																
Dec 18/14					2.9	1.55	<0.02		6.3	20	10	1.3				
	495.29	0.00	0.00	1.67	3.16	1.23		18.89	6.43	10.09	13.07	0.82	2.71	3.64	83.37	242.17

Stocking Lake Lab Results, 2014

	Coliforms									Colour						
Date	total	fecal	non-coli	E-coli	Alkalinity	Calcium	Bromide	TDS	PH	TCU	ACU	Turbidity	DOC	TOC	UVT	THM
Jan.9/14	14	0	0	<1				16		5	15	0.4	2.29	2.4		
Jan16/14										5	10	1				200
Jan23/14	16			2						10	15	0.4				210
Jan29/14					9.3	3.45	<0.10		7	10	15	0.6				
Feb5/14	17	-		<1				29		13	17	0.5	3.46	3.52	83.7	
feb20/14	13			<1				-		13	19	0.4			85	
feb27/14					8.8	3.63	<.01		6.9	12	14	1.5				
Mar 6/14	15			<1				29		11	15	0.7	2.28	2.4		
Mar 13/14										10	13	0.4				
Mar.20/14	2			<1						10	12	0.8			83.5	
mar 27 /14					8.4	3.71	<.01		6.8	12	13	0.6				
Apr 3/14	21			<1				33		13	14	0.3	2.27	1.84	83.8	
Apr. 10/14								00		12	14	0.2			00.0	270
Apr. 17/14	87			<1						11	13	0.6			83.4	2.0
Apr.24/14					8.5	3.59	<0.2		7.1	5	7	0.3				
May.8/14					0.0	0.00	10.2			11	13	0.6				
May.15/14	140			1						12	15	0.4			83.1	
May.22/14	110				8.6	3.44	<.02		7	8	12	0.6			00.1	
May.29/14	<1			<1	0.0	0.11	4.0Z	24		12	15	0.6	2.91	3.6	83.6	
Jun.5/14				~ _				27		7	13	0.0	2.51	0.0	00.0	
Jun.12/14	440			<1						10	12	0.0			83.8	
Jun. 19/14	-++0			~	9.4	3.42	<.02		7	11	14	0.4			00.0	
Jun.26/14	700			13	5.4	0.42	<.0∠	30		12	14	0.5	1.77	3.96	84.9	
Jul.3/14	100			10				00		10	14	0.3	1.77	0.00	04.0	
Jul.10/14	140			<1						5	10	0.8			84.8	180
jul.17/14	140			~	9.9		< 0.02		6.9	11	13	0.0			04.0	100
Jul.24/14	920			1	0.0		\0.0 ∠	26	0.0	10	12	0.3	2.75	2.81	85.4	
Jul.31/14	520							20		5	10	0.0	2.75	2.01	00.4	
Aug.7/14	1600			<1						10	12	0.4				85.4
Aug 14/14	1000			~	3.3	4.02	< 0.02		6.7	7	12	0.4				00.4
Aug 28/14					0.0	4.02	\0.0 ∠		0.7	5	10	0.0				
Sept 4/14	560			3						10	12	0.5			85.8	
Sept 11/14	000				8.4	4.03	<.02		6.9	9	11	0.5			00.0	
Sept 18/14	1300			<1	0.4	4.00	<.0∠	32	0.0	10	13	0.5	3.53	3.38	86.3	
Sept 16/14 Sept 25/14	1000			~ 1				<u>52</u>		10	12	0.5	0.00	0.00	00.0	260
Oct 2/14	730			1						9	14	0.3			88.2	200
Oct 2/14 Oct 9/14	130				3.6	3.6	<.02		6.5	8	14	0.7			00.2	
Oct 16/14	680			2	0.0	5.0	N.02	27	0.0	9	12	0.5	2.74	3.72	86.7	
Oct 16/14 Oct 23/14	000			2				<u>~1</u>		9 10	13	0.6	2.74	5.72	00.7	
Oct 23/14	510			2						5	5	0.6		2.23	84.5	
Nov 6/14	510			2	9.4	3.87	< 0.02		6.9	5	5	0.6		2.23	04.5	
Nov 13/14	180			3	3.4	5.07	<0.0Z	24	0.9	5	10	0.8	4.63	3.97	84	
Nov 13/14	100			5				24		10	10	0.7	+.03	3.97	04	
Nov 20/14	55			<1						10	10	0.5			83.1	
Dec 4/14										5	5	0.7			03.1	320
Dec 4/14 Dec 11/14										5	5	0.0				320
Dec 11/14					I											

							onan	u c.	cen		1100			•		
	Coliforms									Colour						
Date	total	fecal	non-coli	E-coli	Alkalinity	Calcium	Bromide	TDS	PH	TCU	ACU	Turbidity	DOC	TOC	UVT	THM
Jan.9/14	130	0	0	2				16		12	20	0.7	3.4	3.6		
Jan15/14										10	15	0.9				350
Jan23/14	46			<1						10	12	0.1				280
Jan30/14					5.9	50	< 0.01		6.8	15	17	0.4				
Feb6/14	16			<1						13	16	0.8	2.38	2.57	83.4	
feb20/14	45			<1						17	23	0.3			78.4	
Feb27/14					5	1.83	<.01		6.7	15	18	0.4				
Mar 6/14	490			20	Ű			37	0	16	35	0.4	3.86	3.89		
Mar 13/14								0.		14	16	0.4	0.00	0.00		
Mar.20/14	18			<1						12	15	0.4			79.2	
mar 27/14	10			<u> </u>	3.6	1.5	<.01		6.5	16	25	0.9			13.2	
Apr 3/14	31			<1	5.0	1.5	<.01	24	0.5	16	18	0.3	2.91	2.52	80.2	
Apr.10/14	31			<1				24		14	15	0.2	2.91	2.52	00.2	300
Apr. 17/14	70														00.0	300
Apr.17/14	76			<1		4.00	0.00		<u> </u>	14	16	0.6			80.3	
Apr.24/14					4.4	1.66	<0.02		6.8	12	15	1.3				
May.8/14	000			00					_	13	16	0.5			04.1	
May.15/14	220			22						13	15	0.5			81.4	
May.22/14					6.3	2.08	<.02		6.9	12	13	0.3				
May.29/14	420			69				24		12	13	0.2	2.92	2.9	83.2	
Jun.5/14										7	13	0.3				
Jun.12/14	700			17						11	14	0.3			86.3	
Jun.19/14					5.9	1.99	<.02		6.8	13	15	0.1				
Jun.26/14	110			2				24		13	14	0.2	1.34	5.33	88.2	
Jul.3/14										13	14	0.3				
Jul.10/14	430			17						10	12	0.2			88.1	160
jul.17/14					5.3		< 0.02		6.6	12	13	0.1				
Jul.24/14	990			53				17		10	13	0.2	2.28	2.15	85.7	
Jul.31/14										5	10	0.2				
Aug.7/14	280			32						10	13	0.2			87.7	
Aug 14/14					4.9	1.86	< 0.02		6.4	10	13	0.3				
Aug 21/14	320			10				16	-	13	15	0.6	1.83	2.02	89	
Aug 28/14										10	12	0.5				
Sept 4/14	730			10						10	12	0.1			89.4	
Sept 11/14					5	1.8	<.02		6.7	9	11	0.2				
Sept 18/14	900			13	0	1.0	1.02	23	0.7	9	13	0.2	3.47	2.92	89.9	
Sept 25/14	000			10				20		11	14	0.2	0.11	2.02	00.0	250
Oct 2/14	330			2						10	14	0.2			90	200
Oct 2/14 Oct 9/14	000			2	3.6	1.88	<.02		6.5	8	14	0.4			30	
Oct 9/14 Oct 16/14	860			8	5.0	1.00	<.UZ	27	0.5	0 12	12	0.5	2.43	3.41	82.6	
Oct 23/14	000			0				21		40	48	1.2	2.43	3.41	02.0	
	400			1.4										4.70	60 F	
Oct 29/14	490			14	47	2.05	.0.00		6.6	25	30	0.6		4.76	60.5	
Nov 6/14	470				4.7	2.05	<0.02		6.6	20	25	0.5	4.04	5.4	75.0	
Nov 13/14	170			1				26		15	20	0.3	4.31	5.1	75.6	
Nov 20/14										15	15	0.4				
Nov 27/14	160			12						25	30	1.7			64	
Dec 4/14										10	10	0.5				440
Dec 11/14																
Dec 18/14					4.2	2.06	< 0.02		6.6	20	5	0.3				
	346.17	0.00	0.00	17.88	4.90	6.25		23.40	6.66	13.45	16.55	0.44	2.83	3.43	82.16	296.67
-								-								

Chicken Ladder (Lower Holland Creek) Lab Results, 2014

Appendix C – Haloacetic Acids in Domestic Water Supplies

The following additional information is related to Haloacetic Acid concentrations in domestic water supplies. More information is available on this topic from Vancouver Island Health, and from:

http://healthycanadians.gc.ca/publications/healthy-living-vie-saine/water-haloacetichaloacetique-eau/index-eng.php.

Part II. Science and Technical Considerations

7.0 Treatment Technology

Although HAA formation in water is largely a function of the amount of organic compounds in water and their contact time with chlorine, it is important to recognize that the use of chlorination and other disinfection processes has virtually eliminated waterborne microbial diseases. In order to reduce HAA levels in the finished water, it is important to characterize the source water to ensure that the treatment process is optimized for precursor removal.

7.1 Municipal scale

There are three approaches to limiting the concentrations of HAAs in municipally treated drinking water:

- treatment of water to remove HAA precursors prior to disinfection;
- the use of alternative disinfectants and disinfection strategies; and
- treatment of water to remove HAAs after their formation.

The majority of changes occurring in the water industry now focus on strategies to remove DBP precursors prior to disinfection and the use of alternative disinfectants and alternative disinfection strategies.

7.1.1 Removal of precursors prior to municipal disinfection

The removal of organic precursors is the most effective way to reduce the concentrations of all DBPs, including HAAs, in finished water (U.S. EPA, 1999c; Reid Crowther & Partners Ltd., 2000). These precursors include synthetic organic compounds and NOM, which can react with disinfectants to form HAAs. Removing HAA precursors will also result in the formation of lower concentrations of HAAs (Reid Crowther & Partners Ltd., 2000). Conventional municipal-scale water treatment techniques (coagulation, sedimentation, dissolved air flotation, precipitative softening and filtration) can reduce the amount of HAA precursors, but are ineffective in removing HAAs once they are formed. Granular activated carbon (GAC), membranes and ozone-biofiltration systems can also remove organic matter from water. The U.S. EPA has identified precursor removal technologies such as GAC and membrane filtration, specifically nanofiltration, as Best Available Technologies (BAT) for controlling DBP formation (U.S. EPA, 2005b).

Potassium permanganate can be used to oxidize organic precursors at the head of the treatment plant, thus minimizing the formation of by-products at the disinfection

stage (<u>U.S. EPA, 1999a</u>). The use of ozone for oxidation of precursors is currently being studied. Early work has shown that the effects of ozonation, prior to chlorination, depend on treatment design and raw water quality and thus are unpredictable. The key variables that seem to determine the effect of ozone are dose, pH, alkalinity and the nature of the organic material in the water. Ozone has been shown to be effective at reducing precursors at low pH. However, at pH levels above 7.5, ozone may actually increase the production of CDBP precursors (<u>U.S. EPA, 1999a</u>).

7.1.2 Alternative municipal disinfection strategies

The use of alternative disinfectants, such as chloramines (secondary disinfection only), ozone (primary disinfection only) and chlorine dioxide (primary and secondary disinfection), is increasing. However, each of these alternatives has also been shown to form its own set of DBPs. Combinations of disinfectants, when optimized, can help controlHAA formation. Preozonation is feasible for water sources that have turbidity levels below 10 nephelometric turbidity units (NTU) and bromide concentrations below 0.01 mg/L, to minimize the formation of bromate (Reid Crowther & Partners Ltd., 2000). Ultraviolet (UV) disinfection is also being used as an alternative disinfectant. Since UV disinfection is dependent on light transmission to the microbes, water quality characteristics affectingUV transmittance must be considered in the design of the system. UV irradiation at typical doses and wavelengths does not affect HAA formation in subsequent chlorination or chloramination steps (Reid Crowther & Partners Ltd., 2000). Neither ozone nor UVdisinfection leaves a residual disinfectant, and both must therefore be used in combination with a secondary disinfectant to maintain a residual in the distribution system.

It is recommended that any change made to the treatment process, particularly when changing the disinfectant, be accompanied by close monitoring of lead levels in the distributed water. A change of disinfectant has been found to affect the levels of lead at the tap; in Washington, DC, for example, a change from chlorine to chloramines resulted in significantly increased levels of lead in the distributed drinking water. When chlorine, a powerful oxidant, is used as the disinfectant, lead dioxide scales formed in distribution system pipes reach a dynamic equilibrium in the distribution system. In Washington, DC, switching from chlorine to chloramines decreased the oxidation-reduction potential of the distributed water and destabilized the lead dioxide scales, which resulted in increased lead leaching (Schock and Giani, 2004). Subsequent laboratory experiments by Edwards and Dudi (2004) and Lytle and Schock (2005) confirmed that lead dioxide deposits could be readily formed and subsequently destabilized in weeks to months under realistic conditions of distribution system pH, oxidation-reduction potential and alkalinity.

7.1.3 Removal of HAAs after formation

Although precursor removal is considered the most effective approach to reduce HAAconcentrations, removal of HAAs is also possible. Adsorption onto activated carbon is widely used to remove organic compounds such as HAAs from drinking water. This method involves pumping water through a bed of activated carbon onto which HAA molecules become attached (adsorbed). If an activated carbon filter bed is deep enough to allow sufficient contact time, it can be effective in removing HAAs from drinking water. Biofiltration may be an effective process for removing biodegradable organic matter and biodegradable DBPs from water. GAC, anthracite, sand and garnet are common media that support colonization by bacteria and can be used as biological filters. Information on the use of biofiltration

for HAA removal is limited, although work has shown that bacteriacolonized GAC (biologically active carbon) is an effective process for HAA removal (<u>Xie, 2004</u>).

Appendix D – Ministry of Health – Microbiological Results, 2014

The following pages provide the Ministry of Health Microbiological Sampling for The Town's distribution system for 2014. For more information, please visit <u>www.healthspace.ca</u>

Location	Date	Total Coliform	E. Coli
405 Blair Place, 405 Blair Place	17-Dec-2014	L1	L1
558 Hooper Place, 558 Hooper Place	17-Dec-2014	L1	L1
1280 Rocky Creek Road, 1280 Rocky Creek Road	8-Dec-2014	L1	L1
432 Davis Road, 432 Davis Road	8-Dec-2014	L1	L1
Kinsmen Park, 1000 Colonia Drive	8-Dec-2014	L1	L1
Wastewater Treatment Plant, Oyster Cove Road	8-Dec-2014	L1	L1
604 Farrell Road, 604 Farrell Road	1-Dec-2014	L1	L1
606 Oakwood Road, 606 Oakwood Road	1-Dec-2014	L1	L1
City Hall, 410 Esplanade	1-Dec-2014	L1	L1
Public Works Yard, 340 6th Avenue	1-Dec-2014	L1	L1
1280 Rocky Creek Road, 1280 Rocky Creek Road	26-Nov-2014	L1	L1
Public Works Yard, 340 6th Avenue	26-Nov-2014	L1	L1
558 Hooper Place, 558 Hooper Place	18-Nov-2014	L1	L1
405 Blair Place, 405 Blair Place	18-Nov-2014	L1	L1
Wastewater Treatment Plant, Oyster Cove Road	18-Nov-2014	L1	L1
432 Davis Road, 432 Davis Road	12-Nov-2014	L1	L1
Kinsmen Park, 1000 Colonia Drive	12-Nov-2014	L1	L1
604 Farrell Road, 604 Farrell Road	4-Nov-2014	L1	L1
606 Oakwood Road, 606 Oakwood Road	4-Nov-2014	L1	L1
City Hall, 410 Esplanade	4-Nov-2014	L1	L1
432 Davis Road, 432 Davis Road	28-Oct-2014	L1	L1
Kinsmen Park, 1000 Colonia Drive	28-Oct-2014	L1	L1
Wastewater Treatment Plant, Oyster Cove Road	28-Oct-2014	L1	L1
1280 Rocky Creek Road, 1280 Rocky Creek Road	21-Oct-2014	L1	L1
558 Hooper Place, 558 Hooper Place	21-Oct-2014	L1	L1
AUDIT- Town of Ladysmith, any available source	20-Oct-2014	L1	L1
405 Blair Place, 405 Blair Place	14-Oct-2014	L1	L1
Public Works Yard, 340 6th Avenue	14-Oct-2014	L1	L1
604 Farrell Road, 604 Farrell Road	8-Oct-2014	L1	L1

Location	Date	Total Coliform	E. Coli
606 Oakwood Road, 606 Oakwood Road	8-Oct-2014	L1	L1
City Hall, 410 Esplanade	8-Oct-2014	L1	L1
558 Hooper Place, 558 Hooper Place	30-Sep-2014	L1	L1
Public Works Yard, 340 6th Avenue	30-Sep-2014	L1	L1
1280 Rocky Creek Road, 1280 Rocky Creek Road	23-Sep-2014	L1	L1
Wastewater Treatment Plant, Oyster Cove Road	23-Sep-2014	L1	L1
405 Blair Place, 405 Blair Place	16-Sep-2014	L1	L1
City Hall, 410 Esplanade	16-Sep-2014	L1	L1
604 Farrell Road, 604 Farrell Road	9-Sep-2014	L1	L1
606 Oakwood Road, 606 Oakwood Road	9-Sep-2014	L1	L1
432 Davis Road, 432 Davis Road	3-Sep-2014	L1	L1
Kinsmen Park, 1000 Colonia Drive	3-Sep-2014	L1	L1
405 Blair Place, 405 Blair Place	26-Aug-2014	L1	L1
City Hall, 410 Esplanade	26-Aug-2014	L1	L1
604 Farrell Road, 604 Farrell Road	19-Aug-2014	L1	L1
Kinsmen Park, 1000 Colonia Drive	19-Aug-2014	L1	L1
432 Davis Road, 432 Davis Road	12-Aug-2014	L1	L1
606 Oakwood Road, 606 Oakwood Road	12-Aug-2014	L1	L1
Wastewater Treatment Plant, Oyster Cove Road	12-Aug-2014	L1	L1
1280 Rocky Creek Road, 1280 Rocky Creek Road	5-Aug-2014	L1	L1
558 Hooper Place, 558 Hooper Place	5-Aug-2014	L1	L1
Public Works Yard, 340 6th Avenue	5-Aug-2014	L1	L1
558 Hooper Place, 558 Hooper Place	29-Jul-2014	L1	L1
Wastewater Treatment Plant, Oyster Cove Road	29-Jul-2014	L1	L1
405 Blair Place, 405 Blair Place	22-Jul-2014	L1	L1
Public Works Yard, 340 6th Avenue	22-Jul-2014	L1	L1
1280 Rocky Creek Road, 1280 Rocky Creek Road	15-Jul-2014	L1	L1
Kinsmen Park, 1000 Colonia Drive	15-Jul-2014	L1	L1
604 Farrell Road, 604 Farrell Road	9-Jul-2014	1	L1
City Hall, 410 Esplanade	9-Jul-2014	L1	L1
432 Davis Road, 432 Davis Road	2-Jul-2014	L1	L1
606 Oakwood Road, 606 Oakwood Road	2-Jul-2014	L1	L1
405 Blair Place, 405 Blair Place	25-Jun-2014	L1	L1
Wastewater Treatment Plant, Oyster Cove Road	25-Jun-2014	L1	L1
1280 Rocky Creek Road, 1280 Rocky Creek Road	17-Jun-2014	L1	L1
558 Hooper Place, 558 Hooper Place	17-Jun-2014	L1	L1
604 Farrell Road, 604 Farrell Road	11-Jun-2014	L1	L1
606 Oakwood Road, 606 Oakwood Road	11-Jun-2014	L1	L1

Location	Date	Total Coliform	E. Coli
Public Works Yard, 340 6th Avenue	11-Jun-2014	L1	L1
432 Davis Road, 432 Davis Road	3-Jun-2014	L1	L1
City Hall, 410 Esplanade	3-Jun-2014	L1	L1
Kinsmen Park, 1000 Colonia Drive	3-Jun-2014	L1	L1
405 Blair Place, 405 Blair Place	27-May-2014	L1	L1
City Hall, 410 Esplanade	27-May-2014	L1	L1
558 Hooper Place, 558 Hooper Place	21-May-2014	L1	L1
604 Farrell Road, 604 Farrell Road	21-May-2014	L1	L1
Kinsmen Park, 1000 Colonia Drive	21-May-2014	L1	L1
432 Davis Road, 432 Davis Road	13-May-2014	L1	L1
Public Works Yard, 340 6th Avenue	13-May-2014	L1	L1
1280 Rocky Creek Road, 1280 Rocky Creek Road	6-May-2014	L1	L1
606 Oakwood Road, 606 Oakwood Road	6-May-2014	L1	L1
Wastewater Treatment Plant, Oyster Cove Road	6-May-2014	L1	L1
432 Davis Road, 432 Davis Road	29-Apr-2014	L1	L1
City Hall, 410 Esplanade	29-Apr-2014	L1	L1
558 Hooper Place, 558 Hooper Place	23-Apr-2014	L1	L1
Public Works Yard, 340 6th Avenue	23-Apr-2014	L1	L1
1280 Rocky Creek Road, 1280 Rocky Creek Road	15-Apr-2014	L1	L1
405 Blair Place, 405 Blair Place	15-Apr-2014	L1	L1
604 Farrell Road, 604 Farrell Road	8-Apr-2014	L1	L1
Kinsmen Park, 1000 Colonia Drive	8-Apr-2014	L1	L1
606 Oakwood Road, 606 Oakwood Road	1-Apr-2014	L1	L1
Wastewater Treatment Plant, Oyster Cove Road	1-Apr-2014	L1	L1
405 Blair Place, 405 Blair Place	25-Mar-2014	L1	L1
Kinsmen Park, 1000 Colonia Drive	25-Mar-2014	L1	L1
1280 Rocky Creek Road, 1280 Rocky Creek Road	18-Mar-2014	L1	L1
558 Hooper Place, 558 Hooper Place	18-Mar-2014	L1	L1
604 Farrell Road, 604 Farrell Road	11-Mar-2014	L1	L1
City Hall, 410 Esplanade	11-Mar-2014	L1	L1
Wastewater Treatment Plant, Oyster Cove Road	11-Mar-2014	L1	L1
432 Davis Road, 432 Davis Road	4-Mar-2014	L1	L1
606 Oakwood Road, 606 Oakwood Road	4-Mar-2014	L1	L1
Public Works Yard, 340 6th Avenue	4-Mar-2014	L1	L1
604 Farrell Road, 604 Farrell Road	26-Feb-2014	L1	L1
Kinsmen Park, 1000 Colonia Drive	26-Feb-2014	L1	L1

Location	Date	Total Coliform	E. Coli
405 Blair Place, 405 Blair Place	19-Feb-2014	L1	L1
432 Davis Road, 432 Davis Road	19-Feb-2014	L1	L1
Public Works Yard, 340 6th Avenue	19-Feb-2014	L1	L1
1280 Rocky Creek Road, 1280 Rocky Creek Road	12-Feb-2014	L1	L1
558 Hooper Place, 558 Hooper Place	12-Feb-2014	L1	L1
606 Oakwood Road, 606 Oakwood Road	12-Feb-2014	L1	L1
City Hall, 410 Esplanade	5-Feb-2014	A	
Wastewater Treatment Plant, Oyster Cove Road	5-Feb-2014	A	
1280 Rocky Creek Road, 1280 Rocky Creek Road	28-Jan-2014	L1	L1
558 Hooper Place, 558 Hooper Place	28-Jan-2014	L1	L1
432 Davis Road, 432 Davis Road	21-Jan-2014	- L1	L1
Kinsmen Park, 1000 Colonia Drive	21-Jan-2014	L1	L1
Public Works Yard, 340 6th Avenue	21-Jan-2014	L1	L1
604 Farrell Road, 604 Farrell Road	14-Jan-2014	L1	L1
Wastewater Treatment Plant, Oyster Cove Road	14-Jan-2014	L1	L1
405 Blair Place, 405 Blair Place	7-Jan-2014	L1	L1
606 Oakwood Road, 606 Oakwood Road	7-Jan-2014	L1	L1
City Hall, 410 Esplanade	7-Jan-2014	L1	L1

vancouver Island health authority	HEALTH PROTECTION							
PERMIT								
to OPERATE								
A	WATER SUPPLY SYSTEM							
Water System Name: Premises Number:	TOWN OF LADYSMITH WATER WORKS 1310824							
Premises Address:	330 6th Avenue Ladysmith, BC V0R 2E0							
Water System Owner:	Town Of Ladysmith							
is required to operate this system i	nitted to operate the above potable water supply system and in accordance with the Drinking Water Protection Act and in t out in this operating permit and conditions established as							
The water supply system for which	this operating permit applies is generally described as:							
Service Delivery Area: Source Water: Water Treatment methods are: Water Disinfection methods are: Town of Ladysmith and Diamond Improvement District Banon Creek, Stocking Lake, Holland Lake, Chicken Ladder Dam None Chlorine								
Number of Connections	301-10,000 Connections - DWT							
Operating conditions specific to this	s water supply system are in Appendix A.							
Date: February 14, 2011	Issued By: XAlalabae							
	Environmental Health Officer							
This permit mus in a conspicuous place								
	N							

APPENDIX A

WATER SYSTEM OPERATING CONDITIONS FOR

TOWN OF LADYSMITH WATER WORKS

330 6th Avenue

Ladysmith, BC, VOR 2E0

Compliance with these Operating Permit Terms and Conditions do not relieve the operator of other legislated responsibilities and obligations.

The specific items and conditions of this operating permit are listed below as:

1. Existing Performance Standards

The Water System Owner (Town of Ladysmith) shall ensure the disinfection system is in good working order and provide the following:

- a 4-log inactivation of viruses, and
- raw water turbidity must be recorded on a continuous basis and shall not exceed 1 NTU in more than 5% of the average daily measurements in each calendar month. If the raw water exceeds an average of 5 NTU for a period of more than 12 hours, the Drinking Water Officer must be contacted immediately.

2. Future Treatment Specifications

On or before January 31, 2018, the Water System Owner shall provide two treatment processes acceptable to Island Health (Vancouver Island Health Authority), to achieve a 4-log removal/inactivation of viruses; a 3-log removal/inactivation of Giardia cysts and Cryptosporidium oocysts and produce finished water with less than 1 NTU turbidity.

The Water System Owner is required to meet the following implementation plan dates:

A. <u>Pilot Testing Program and Selection of Treatment Process</u> By March 31, 2015 a final treatment process shall be determined and submitted to our office.

B. Final Selection of the Filtration Plant

By May 31, 2016, the filtration process selected is to be completed.

C. Completion of the Filtration Plant Project

By January 31, 2018, the construction of the Filtration Plant is to be completed and in operation.

Environmental Health Officer

Health Protection & Environmental Services 3rd Floor – 6475 Metral Drive Nanaimo BC V9T 2L9

Tel: 250-755-6215 | Fax: 250-755-3372 viha.ca

Town of Ladysmith

Date: July 7, 2014

2014 Annual Water Quality Report

Page 57